Proxima Centauri c

Exoplanet candidate orbiting Proxima Centauri From Wikipedia, the free encyclopedia

Proxima Centauri c

Proxima Centauri c (also called Proxima c[2] or Alpha Centauri Cc) is a controversial exoplanet candidate whose detection could not be recreated, claimed to be orbiting the red dwarf star Proxima Centauri, which is the closest star to the Sun and part of a triple star system.[4]

Quick Facts Discovery, Discovered by ...
Proxima Centauri c
Thumb
Schematic: Orbits of Proxima Centauri d, Proxima Centauri b and Proxima Centauri c around Proxima Centauri
Discovery[1]
Discovered byDamasso et al.
Discovery siteHARPS
Discovery dateJanuary 2020
Radial velocity
Orbital characteristics
1.489±0.049 AU[2]
Eccentricity0.04±0.01[3]
1928±20 d[3]
Inclination133±1[3]
331±1[3]
−4±4[3]
2456202±21[3]
Semi-amplitude1.1±0.2[3]
StarProxima Centauri
Physical characteristics
Mass7±1 ME[3]
Temperature39 K (−234.2 °C; −389.5 °F)[1]
    Close

    Characteristics

    It is located approximately 4.2 light-years (1.3 parsecs; 40 trillion kilometres; 25 trillion miles) from Earth in the constellation of Centaurus, making it, Proxima b, and Proxima d the closest known exoplanets to the Solar System.

    Proxima Centauri c is a super-Earth or mini-Neptune about 7 times as massive as Earth, orbiting at roughly 1.49 AU (223 million km; 139 million mi) every 1,928 days (5.28 yr).[3] Due to its large mass and its distance from Proxima Centauri, the exoplanet is uninhabitable and too cold for liquid water to exist on the surface, with an equilibrium temperature of approximately 39 K (−234.2 °C; −389.5 °F).[1][5] The planet is not transiting its parent star from the point of view of an Earth-based observer.[6]

    Discovery

    Summarize
    Perspective

    The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April 2019. Damasso's team had noticed minor movements of Proxima Centauri in the radial velocity data from the ESO's HARPS instrument, analyzed earlier by Ukrainian astrophysicist Yakiv Pavlenko and his colleagues at the Instituto de Astrofísica de Canarias,[7][8][9] indicating a possible second planet orbiting Proxima Centauri.[10] The discovery was published on 15 January 2020.[1]

    Red dwarfs has wide developed convection zones, where magnetic fields are forming. So, for them stellar flares are typical (by analogy to the flares on Sun). [...] From another side, red dwarfs are low mass objects, thats why their movement is a more sensitive to existience of exoplanets.

    Yakiv Pavlenko, Proxima Centauri could be a home for the second planet [updated], 16 January 2020, https://scienceukraine.com/cosmos/proxima-c-candidate/

    In June 2020, the planet's existence was initially confirmed using Hubble astrometry data from c.1995, allowing its inclination and true mass to be determined.[3][11] Also in June 2020, a possible directly imaged counterpart of Proxima c was detected in the infrared with SPHERE, but the authors admit that they "did not obtain a clear detection".[12] If their candidate source is in fact Proxima Centauri c, it is too bright for a planet of its mass and age, implying that the planet may have a ring system with a radius of around 5 RJ.[12]

    However, a 2022 study questioned the planetary nature of the observed radial velocity signal corresponding to Proxima c, attributing it to systematic effects.[4] If this is the case, it is unclear why astrometric observations detected what appeared to be a similar planetary signature.[citation needed]

    See also

    References

    Loading related searches...

    Wikiwand - on

    Seamless Wikipedia browsing. On steroids.