Top Qs
Timeline
Chat
Perspective
Proximity space
Structure describing a notion of "nearness" between subsets From Wikipedia, the free encyclopedia
Remove ads
In topology, a proximity space, also called a nearness space, is an axiomatization of the intuitive notion of "nearness" that hold set-to-set, as opposed to the better known point-to-set notion that characterize topological spaces.
The concept was described by Frigyes Riesz (1909) but ignored at the time.[1] It was rediscovered and axiomatized by V. A. Efremovič in 1934 under the name of infinitesimal space, but not published until 1951. In the interim, A. D. Wallace (1941) discovered a version of the same concept under the name of separation space.
Remove ads
Definition
Summarize
Perspective
A proximity space is a set with a relation between subsets of satisfying the following properties:
For all subsets
- implies
- implies
- implies
- if and only if ( or )
- (For all or ) implies
Proximity without the first axiom is called quasi-proximity (but then Axioms 2 and 4 must be stated in a two-sided fashion).
If we say is near or and are proximal; otherwise we say and are apart. We say is a proximal- or -neighborhood of written if and only if and are apart.
The main properties of this set neighborhood relation, listed below, provide an alternative axiomatic characterization of proximity spaces.
For all subsets
- implies
- implies
- ( and ) implies
- implies
- implies that there exists some such that
A proximity space is called separated if implies
A proximity or proximal map is one that preserves nearness, that is, given if in then in Equivalently, a map is proximal if the inverse map preserves proximal neighborhoodness. In the same notation, this means if holds in then holds in
Remove ads
Properties
Summarize
Perspective
Given a proximity space, one can define a topology by letting be a Kuratowski closure operator. If the proximity space is separated, the resulting topology is Hausdorff. Proximity maps will be continuous between the induced topologies.
The resulting topology is always completely regular. This can be proven by imitating the usual proofs of Urysohn's lemma, using the last property of proximal neighborhoods to create the infinite increasing chain used in proving the lemma.
Given a compact Hausdorff space, there is a unique proximity space whose corresponding topology is the given topology: is near if and only if their closures intersect. More generally, proximities classify the compactifications of a completely regular Hausdorff space.
A uniform space induces a proximity relation by declaring is near if and only if has nonempty intersection with every entourage. Uniformly continuous maps will then be proximally continuous.
Remove ads
See also
- Cauchy space – Concept in general topology and analysis
- Convergence space – Generalization of the notion of convergence that is found in general topology
- Pretopological space – Generalized topological space
- Uniform space
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads