Quantum invariant
Concept in mathematical knot theory From Wikipedia, the free encyclopedia
In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1][2][3]
List of invariants
- Finite type invariant
- Kontsevich invariant
- Kashaev's invariant
- Witten–Reshetikhin–Turaev invariant (Chern–Simons)
- Invariant differential operator[4]
- Rozansky–Witten invariant
- Vassiliev knot invariant
- Dehn invariant
- LMO invariant[5]
- Turaev–Viro invariant
- Dijkgraaf–Witten invariant[6]
- Reshetikhin–Turaev invariant
- Tau-invariant
- I-Invariant
- Klein J-invariant
- Quantum isotopy invariant[7]
- Ermakov–Lewis invariant
- Hermitian invariant
- Goussarov–Habiro theory of finite-type invariant
- Linear quantum invariant (orthogonal function invariant)
- Murakami–Ohtsuki TQFT
- Generalized Casson invariant
- Casson-Walker invariant
- Khovanov–Rozansky invariant
- HOMFLY polynomial
- K-theory invariants
- Atiyah–Patodi–Singer eta invariant
- Link invariant[1]
- Casson invariant
- Seiberg–Witten invariants
- Gromov–Witten invariant
- Arf invariant
- Hopf invariant
See also
References
Further reading
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.