Top Qs
Timeline
Chat
Perspective
Quasi-stationary distribution
Type of random process From Wikipedia, the free encyclopedia
Remove ads
In probability a quasi-stationary distribution is a random process that admits one or several absorbing states that are reached almost surely, but is initially distributed such that it can evolve for a long time without reaching it. The most common example is the evolution of a population: the only equilibrium is when there is no one left, but if we model the number of people it is likely to remain stable for a long period of time before it eventually collapses.
Remove ads
Formal definition
We consider a Markov process taking values in . There is a measurable set of absorbing states and . We denote by the hitting time of , also called killing time. We denote by the family of distributions where has original condition . We assume that is almost surely reached, i.e. .
The general definition[1] is: a probability measure on is said to be a quasi-stationary distribution (QSD) if for every measurable set contained in , where .
In particular
Remove ads
General results
Summarize
Perspective
Killing time
From the assumptions above we know that the killing time is finite with probability 1. A stronger result than we can derive is that the killing time is exponentially distributed:[1][2] if is a QSD then there exists such that .
Moreover, for any we get .
Existence of a quasi-stationary distribution
Most of the time the question asked is whether a QSD exists or not in a given framework. From the previous results we can derive a condition necessary to this existence.
Let . A necessary condition for the existence of a QSD is and we have the equality
Moreover, from the previous paragraph, if is a QSD then . As a consequence, if satisfies then there can be no QSD such that because other wise this would lead to the contradiction .
A sufficient condition for a QSD to exist is given considering the transition semigroup of the process before killing. Then, under the conditions that is a compact Hausdorff space and that preserves the set of continuous functions, i.e. , there exists a QSD.
Remove ads
History
The works of Wright on gene frequency in 1931[3] and of Yaglom on branching processes in 1947[4] already included the idea of such distributions. The term quasi-stationarity applied to biological systems was then used by Bartlett in 1957,[5] who later coined "quasi-stationary distribution".[6]
Quasi-stationary distributions were also part of the classification of killed processes given by Vere-Jones in 1962[7] and their definition for finite state Markov chains was done in 1965 by Darroch and Seneta.[8]
Examples
Quasi-stationary distributions can be used to model the following processes:
- Evolution of a population by the number of people: the only equilibrium is when there is no one left.
- Evolution of a contagious disease in a population by the number of people ill: the only equilibrium is when the disease disappears.
- Transmission of a gene: in case of several competing alleles we measure the number of people who have one and the absorbing state is when everybody has the same.
- Voter model: where everyone influences a small set of neighbors and opinions propagate, we study how many people vote for a particular party and an equilibrium is reached only when the party has no voter, or the whole population voting for it.
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads