Top Qs
Timeline
Chat
Perspective

Quoc V. Le

Vietnamese-American computer scientist From Wikipedia, the free encyclopedia

Remove ads

Lê Viết Quốc (born 1982),[1] or in romanized form Quoc Viet Le, is a Vietnamese-American computer scientist and a machine learning pioneer at Google Brain, which he established with colleagues from Google. He co-invented the doc2vec[2] and seq2seq[3] models in natural language processing. Le also initiated and lead the AutoML initiative at Google Brain, including the proposal of neural architecture search.[4][5][6][7]

Quick Facts Born, Education ...
Remove ads
Remove ads

Education and career

Summarize
Perspective

Le was born in Hương Thủy in the Thừa Thiên Huế province of Vietnam.[5] He attended Quốc Học Huế High School[8] before moving to Australia in 2004 to pursue a Bachelor’s degree at the Australian National University. During his undergraduate studies, he worked with Alex Smola on Kernel method in machine learning.[9] In 2007, Le moved to the United States to pursue graduate studies in computer science at Stanford University, where his PhD advisor was Andrew Ng.

In 2011, Le became a founding member of Google Brain along with his then advisor Andrew Ng, Google Fellow Jeff Dean, and researcher Greg Corrado.[5] He led Google Brain’s first major breakthrough: a deep learning algorithm trained on 16,000 CPU cores, which learned to recognize cats by watching YouTube videos—without being explicitly taught the concept of a "cat."[10][11]

In 2014, Le co-proposed two influential models in machine learning. Together with Ilya Sutskever, Oriol Vinyals, he introduced the seq2seq model for machine translation, a foundational technique in natural language processing. In the same year, in collaboration with Tomáš Mikolov, Le developed the doc2vec model for representation learning of documents. Le was also a key contributor of Google Neural Machine Translation system.[12]

In 2017, Le initiated and led the AutoML project at Google Brain, pioneering the use of neural architecture search.[13] This project significantly advanced automated machine learning.

In 2020, Le contributed to the development of Meena, later renamed LaMDA, a conversational large language model based on the seq2seq architecture.[14] In 2022, Le and coauthors published chain-of-thought prompting, a method that enhances the reasoning capabilities of large language models.[15]

Remove ads

Honors and awards

Le was named MIT Technology Review's innovators under 35 in 2014.[16] He has been interviewed by and his research has been reported in major media outlets including Wired,[6] the New York Times,[17] the Atlantic,[18] and the MIT Technology Review.[19] Le was named an Alumni Laureate of the Australian National University School of Computing in 2022.[20]

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads