Top Qs
Timeline
Chat
Perspective
Recurrent point
Mathematical concept From Wikipedia, the free encyclopedia
Remove ads
In mathematics, a recurrent point for a function f is a point that is in its own limit set by f. Any neighborhood containing the recurrent point will also contain (a countable number of) iterates of it as well.
Definition
Let be a Hausdorff space and a function. A point is said to be recurrent (for ) if , i.e. if belongs to its -limit set. This means that for each neighborhood of there exists such that .[1]
The set of recurrent points of is often denoted and is called the recurrent set of . Its closure is called the Birkhoff center of ,[2] and appears in the work of George David Birkhoff on dynamical systems.[3][4]
Every recurrent point is a nonwandering point,[1] hence if is a homeomorphism and is compact, then is an invariant subset of the non-wandering set of (and may be a proper subset).
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads