Relative accessible surface area

From Wikipedia, the free encyclopedia

Relative accessible surface area or relative solvent accessibility (RSA) of a protein residue is a measure of residue solvent exposure. It can be calculated by formula:

[1]

where ASA is the solvent accessible surface area and MaxASA is the maximum possible solvent accessible surface area for the residue.[1] Both ASA and MaxASA are commonly measured in .

To measure the relative solvent accessibility of the residue side-chain only, one usually takes MaxASA values that have been obtained from Gly-X-Gly tripeptides, where X is the residue of interest. Several MaxASA scales have been published[1][2][3] and are commonly used (see Table).

More information Residue, Tien et al. 2013 (theor.) ...
ResidueTien et al. 2013 (theor.)[1]Tien et al. 2013 (emp.)[1]Miller et al. 1987[2]Rose et al. 1985[3]
Alanine129.0121.0113.0118.1
Arginine274.0265.0241.0256.0
Asparagine195.0187.0158.0165.5
Aspartate193.0187.0151.0158.7
Cysteine167.0148.0140.0146.1
Glutamate223.0214.0183.0186.2
Glutamine225.0214.0189.0193.2
Glycine104.097.085.088.1
Histidine224.0216.0194.0202.5
Isoleucine197.0195.0182.0181.0
Leucine201.0191.0180.0193.1
Lysine236.0230.0211.0225.8
Methionine224.0203.0204.0203.4
Phenylalanine240.0228.0218.0222.8
Proline159.0154.0143.0146.8
Serine155.0143.0122.0129.8
Threonine172.0163.0146.0152.5
Tryptophan285.0264.0259.0266.3
Tyrosine263.0255.0229.0236.8
Valine174.0165.0160.0164.5
Close

In this table, the more recently published MaxASA values (from Tien et al. 2013[1]) are systematically larger than the older values (from Miller et al. 1987[2] or Rose et al. 1985[3]). This discrepancy can be traced back to the conformation in which the Gly-X-Gly tripeptides are evaluated to calculate MaxASA. The earlier works used the extended conformation, with backbone angles of and .[2][3] However, Tien et al. 2013[1] demonstrated that tripeptides in extended conformation fall among the least-exposed conformations. The largest ASA values are consistently observed in alpha helices, with backbone angles around and . Tien et al. 2013 recommend to use their theoretical MaxASA values (2nd column in Table), as they were obtained from a systematic enumeration of all possible conformations and likely represent a true upper bound to observable ASA.[1]

ASA and hence RSA values are generally calculated from a protein structure, for example with the software DSSP.[4] However, there is also an extensive literature attempting to predict RSA values from sequence data, using machine-learning approaches.[5] [6]

Prediction tools

Experimentally predicting RSA is an expensive and time-consuming task. In recent decades, several computational methods have been introduced for RSA prediction.[7][8][9]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.