Top Qs
Timeline
Chat
Perspective
Resistance distance
Graph metric of electrical resistance between nodes From Wikipedia, the free encyclopedia
Remove ads
In graph theory, the resistance distance between two vertices of a simple, connected graph, G, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a resistance of one ohm. It is a metric on graphs.
Definition
Summarize
Perspective
On a graph G, the resistance distance Ωi,j between two vertices vi and vj is[1]
- where
with + denotes the Moore–Penrose inverse, L the Laplacian matrix of G, |V| is the number of vertices in G, and Φ is the |V| × |V| matrix containing all 1s.
Remove ads
Properties of resistance distance
Summarize
Perspective
If i = j then Ωi,j = 0. For an undirected graph
General sum rule
For any N-vertex simple connected graph G = (V, E) and arbitrary N×N matrix M:
From this generalized sum rule a number of relationships can be derived depending on the choice of M. Two of note are;
where the λk are the non-zero eigenvalues of the Laplacian matrix. This unordered sum
is called the Kirchhoff index of the graph.
Relationship to the number of spanning trees of a graph
For a simple connected graph G = (V, E), the resistance distance between two vertices may be expressed as a function of the set of spanning trees, T, of G as follows:
where T' is the set of spanning trees for the graph G' = (V, E + ei,j). In other words, for an edge , the resistance distance between a pair of nodes and is the probability that the edge is in a random spanning tree of .
Relationship to random walks
The resistance distance between vertices and is proportional to the commute time of a random walk between and . The commute time is the expected number of steps in a random walk that starts at , visits , and returns to . For a graph with edges, the resistance distance and commute time are related as .[2]
As a squared Euclidean distance
Since the Laplacian L is symmetric and positive semi-definite, so is
thus its pseudo-inverse Γ is also symmetric and positive semi-definite. Thus, there is a K such that and we can write:
showing that the square root of the resistance distance corresponds to the Euclidean distance in the space spanned by K.
Connection with Fibonacci numbers
A fan graph is a graph on n + 1 vertices where there is an edge between vertex i and n + 1 for all i = 1, 2, 3, …, n, and there is an edge between vertex i and i + 1 for all i = 1, 2, 3, …, n – 1.
The resistance distance between vertex n + 1 and vertex i ∈ {1, 2, 3, …, n} is
where Fj is the j-th Fibonacci number, for j ≥ 0.[3]
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads