Top Qs
Timeline
Chat
Perspective
Ryll-Nardzewski fixed-point theorem
From Wikipedia, the free encyclopedia
Remove ads
In functional analysis, a branch of mathematics, the Ryll-Nardzewski fixed-point theorem states that if is a normed vector space and is a nonempty convex subset of that is compact under the weak topology, then every group (or equivalently: every semigroup) of affine isometries of has at least one fixed point. (Here, a fixed point of a set of maps is a point that is fixed by each map in the set.)
This theorem was announced by Czesław Ryll-Nardzewski.[1] Later Namioka and Asplund [2] gave a proof based on a different approach. Ryll-Nardzewski himself gave a complete proof in the original spirit.[3]
Remove ads
Applications
The Ryll-Nardzewski theorem yields the existence of a Haar measure on compact groups.[4]
See also
- Fixed-point theorems
- Fixed-point theorems in infinite-dimensional spaces
- Markov-Kakutani fixed-point theorem - abelian semigroup of continuous affine self-maps on compact convex set in a topological vector space has a fixed point
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads