Saddle-node bifurcation
Local bifurcation in which two fixed points of a dynamical system collide and anni From Wikipedia, the free encyclopedia
In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems. In discrete dynamical systems, the same bifurcation is often instead called a fold bifurcation. Another name is blue sky bifurcation in reference to the sudden creation of two fixed points.[1]
If the phase space is one-dimensional, one of the equilibrium points is unstable (the saddle), while the other is stable (the node).
Saddle-node bifurcations may be associated with hysteresis loops and catastrophes.
Normal form
Summarize
Perspective
A typical example of a differential equation with a saddle-node bifurcation is:
Here is the state variable and is the bifurcation parameter.
- If there are two equilibrium points, a stable equilibrium point at and an unstable one at .
- At (the bifurcation point) there is exactly one equilibrium point. At this point the fixed point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed point.
- If there are no equilibrium points.[2]
In fact, this is a normal form of a saddle-node bifurcation. A scalar differential equation which has a fixed point at for with is locally topologically equivalent to , provided it satisfies and . The first condition is the nondegeneracy condition and the second condition is the transversality condition.[3]
Example in two dimensions
Summarize
Perspective

An example of a saddle-node bifurcation in two dimensions occurs in the two-dimensional dynamical system:
As can be seen by the animation obtained by plotting phase portraits by varying the parameter ,
- When is negative, there are no equilibrium points.
- When , there is a saddle-node point.
- When is positive, there are two equilibrium points: that is, one saddle point and one node (either an attractor or a repellor).
Other examples are in modelling biological switches.[4] Recently, it was shown that under certain conditions, the Einstein field equations of General Relativity have the same form as a fold bifurcation.[5] A non-autonomous version of the saddle-node bifurcation (i.e. the parameter is time-dependent) has also been studied.[6]
See also
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.