Saddle-node bifurcation

Local bifurcation in which two fixed points of a dynamical system collide and anni From Wikipedia, the free encyclopedia

In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems. In discrete dynamical systems, the same bifurcation is often instead called a fold bifurcation. Another name is blue sky bifurcation in reference to the sudden creation of two fixed points.[1]

If the phase space is one-dimensional, one of the equilibrium points is unstable (the saddle), while the other is stable (the node).

Saddle-node bifurcations may be associated with hysteresis loops and catastrophes.

Normal form

Summarize
Perspective

A typical example of a differential equation with a saddle-node bifurcation is:

Here is the state variable and is the bifurcation parameter.

  • If there are two equilibrium points, a stable equilibrium point at and an unstable one at .
  • At (the bifurcation point) there is exactly one equilibrium point. At this point the fixed point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed point.
  • If there are no equilibrium points.[2]
Saddle node bifurcation

In fact, this is a normal form of a saddle-node bifurcation. A scalar differential equation which has a fixed point at for with is locally topologically equivalent to , provided it satisfies and . The first condition is the nondegeneracy condition and the second condition is the transversality condition.[3]

Example in two dimensions

Summarize
Perspective
Thumb
Phase portrait showing saddle-node bifurcation

An example of a saddle-node bifurcation in two dimensions occurs in the two-dimensional dynamical system:

As can be seen by the animation obtained by plotting phase portraits by varying the parameter ,

  • When is negative, there are no equilibrium points.
  • When , there is a saddle-node point.
  • When is positive, there are two equilibrium points: that is, one saddle point and one node (either an attractor or a repellor).

Other examples are in modelling biological switches.[4] Recently, it was shown that under certain conditions, the Einstein field equations of General Relativity have the same form as a fold bifurcation.[5] A non-autonomous version of the saddle-node bifurcation (i.e. the parameter is time-dependent) has also been studied.[6]

See also

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.