Top Qs
Timeline
Chat
Perspective
Schwinger parametrization
Loop integral parametrization From Wikipedia, the free encyclopedia
Remove ads
Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.
This article needs additional citations for verification. (July 2022) |
Using the well-known observation that
Julian Schwinger noticed that one may simplify the integral:
for Re(n)>0.
Another version of Schwinger parametrization is:
which is convergent as long as and .[1] It is easy to generalize this identity to n denominators.
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads