Top Qs
Timeline
Chat
Perspective

Scikit-multiflow

Machine learning library for data streams in Python From Wikipedia, the free encyclopedia

Scikit-multiflow
Remove ads

scikit-mutliflow (also known as skmultiflow) is a free and open source software machine learning library for multi-output/multi-label and stream data written in Python.[3]

Quick Facts Original author(s), Developer(s) ...
Remove ads

Overview

scikit-multiflow allows to easily design and run experiments and to extend existing stream learning algorithms.[3] It features a collection of classification, regression, concept drift detection and anomaly detection algorithms. It also includes a set of data stream generators and evaluators. scikit-multiflow is designed to interoperate with Python's numerical and scientific libraries NumPy and SciPy and is compatible with Jupyter Notebooks.

Remove ads

Implementation

The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods[4] compatible with the stream learning setting, Pandas for data manipulation, Numpy and SciPy.

Remove ads

Components

The scikit-multiflow is composed of the following sub-packages:

  • anomaly_detection: anomaly detection methods.
  • data: data stream methods including methods for batch-to-stream conversion and generators.
  • drift_detection: methods for concept drift detection.
  • evaluation: evaluation methods for stream learning.
  • lazy: methods in which generalisation of the training data is delayed until a query is received, i.e., neighbours-based methods such as kNN.
  • meta: meta learning (also known as ensemble) methods.
  • neural_networks: methods based on neural networks.
  • prototype: prototype-based learning methods.
  • rules: rule-based learning methods.
  • transform: perform data transformations.
  • trees: tree-based methods, e.g. Hoeffding trees which are a type of decision tree for data streams.

History

scikit-multiflow started as a collaboration between researchers at Télécom Paris (Institut Polytechnique de Paris[5]) and École Polytechnique. Development is currently carried by the University of Waikato, Télécom Paris, École Polytechnique and the open research community.

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads