Top Qs
Timeline
Chat
Perspective

Sequentially complete

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, specifically in topology and functional analysis, a subspace S of a uniform space X is said to be sequentially complete or semi-complete if every Cauchy sequence in S converges to an element in S. X is called sequentially complete if it is a sequentially complete subset of itself.

Remove ads

Sequentially complete topological vector spaces

Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them.

Properties of sequentially complete topological vector spaces

  1. A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk.[1]
  2. A Hausdorff locally convex space that is sequentially complete and bornological is ultrabornological.[2]

Examples and sufficient conditions

  1. Every complete space is sequentially complete but not conversely.
  2. For metrizable spaces, sequential completeness implies completeness. Together with the previous property, this means sequential completeness and completeness are equivalent over metrizable spaces.
  3. Every complete topological vector space is quasi-complete and every quasi-complete topological vector space is sequentially complete.[3]
Remove ads

See also

References

Loading content...

Bibliography

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads