Top Qs
Timeline
Chat
Perspective
Signature defect
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the signature defect of a singularity measures the correction that a singularity contributes to the signature theorem. Hirzebruch (1973) introduced the signature defect for the cusp singularities of Hilbert modular surfaces. Michael Francis Atiyah, H. Donnelly, and I. M. Singer (1983) defined the signature defect of the boundary of a manifold as the eta invariant, the value as s = 0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s = 0 or 1 of a Shimizu L-function.
Remove ads
References
- Atiyah, Michael Francis; Donnelly, H.; Singer, I. M. (1983), "Eta invariants, signature defects of cusps, and values of L-functions", Annals of Mathematics, Second Series, 118 (1): 131–177, doi:10.2307/2006957, ISSN 0003-486X, JSTOR 2006957, MR 0707164
- Hirzebruch, Friedrich E. P. (1973), "Hilbert modular surfaces", L'Enseignement Mathématique, 2e Série, 19: 183–281, doi:10.5169/seals-46292, ISSN 0013-8584, MR 0393045
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads