Top Qs
Timeline
Chat
Perspective
Slice theorem (differential geometry)
On extending a Lie group action on a manifold to an equivariant diffeomorphism From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In differential geometry, the slice theorem states:[1] given a manifold on which a Lie group acts as diffeomorphisms, for any in , the map extends to an invariant neighborhood of (viewed as a zero section) in so that it defines an equivariant diffeomorphism from the neighborhood to its image, which contains the orbit of .
The important application of the theorem is a proof of the fact that the quotient admits a manifold structure when is compact and the action is free.
In algebraic geometry, there is an analog of the slice theorem; it is called Luna's slice theorem.
Remove ads
Idea of proof when G is compact
Since is compact, there exists an invariant metric; i.e., acts as isometries. One then adapts the usual proof of the existence of a tubular neighborhood using this metric.
See also
- Luna's slice theorem, an analogous result for reductive algebraic group actions on algebraic varieties
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads