Top Qs
Timeline
Chat
Perspective
Spectral rendering
Computer graphics rendering technique From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In computer graphics, spectral rendering is a technique in which a scene's light transport is modeled with real wavelengths. This process is typically slower than traditional rendering, which renders the scene in its red, green, and blue components and then overlays the images. Spectral rendering is often used in ray tracing or photon mapping to more accurately simulate the scene, often for comparison with an actual photograph to test the rendering algorithm (as in a Cornell Box) or to simulate different portions of the electromagnetic spectrum for the purpose of scientific work. The images simulated are not necessarily more realistic appearing, but when compared to a real image pixel for pixel the result is often much closer.
This article needs additional citations for verification. (May 2009) |
Spectral rendering can also simulate light sources and objects more effectively, as the light's emission spectrum can be used to release photons at a particular wavelength in proportion to the spectrum. Objects' spectral reflectance curves can similarly be used to reflect certain portions of the spectrum more accurately.
As an example, certain properties of tomatoes make them appear differently under sunlight than under fluorescent light. Using the blackbody radiation equations to simulate sunlight or the emission spectrum of a fluorescent bulb in combination with the tomato's spectral reflectance curve, more accurate images of each scenario can be produced.
Remove ads
Implementations
Render engines that define themselves as being capable of spectral rendering:
- Vred[1]
- FluidRay[3]
- Indigo Renderer[4]
- Mitsuba[7]
- Spectral Studio[9]
- Thea Render[10]
- Ocean[11]
- ART[12]
- Manuka[13]
- Predict Engine [14]
- Malia [15]
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads