Top Qs
Timeline
Chat
Perspective
State-transition matrix
Describes state evolution of a linear system From Wikipedia, the free encyclopedia
Remove ads
In control theory and dynamical systems theory, the state-transition matrix is a matrix function that describes how the state of a linear system changes over time. Essentially, if the system's state is known at an initial time , the state-transition matrix allows for the calculation of the state at any future time .
![]() | This article may be too technical for most readers to understand. (December 2018) |
The matrix is used to find the general solution to the homogeneous linear differential equation and is also a key component in finding the full solution for the non-homogeneous (input-driven) case.
For linear time-invariant (LTI) systems, where the matrix is constant, the state-transition matrix is the matrix exponential . In the more complex time-variant case, where can change over time, there is no simple formula, and the matrix is typically found by calculating the Peano–Baker series.
Remove ads
Linear systems solutions
Summarize
Perspective
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form
- ,
where are the states of the system, is the input signal, and are matrix functions, and is the initial condition at . Using the state-transition matrix , the solution is given by:[1][2]
The first term is known as the zero-input response and represents how the system's state would evolve in the absence of any input. The second term is known as the zero-state response and defines how the inputs impact the system.
Remove ads
Peano–Baker series
Summarize
Perspective
The most general transition matrix is given by a product integral, referred to as the Peano–Baker series
where is the identity matrix. This matrix converges uniformly and absolutely to a solution that exists and is unique.[2] The series has a formal sum that can be written as
where is the time-ordering operator, used to ensure that the repeated product integral is in proper order. The Magnus expansion provides a means for evaluating this product.
Remove ads
Other properties
The state transition matrix satisfies the following relationships. These relationships are generic to the product integral.
- It is continuous and has continuous derivatives.
- It is never singular; in fact and , where is the identity matrix.
- for all .[3]
- for all .
- It satisfies the differential equation with initial conditions .
- The state-transition matrix , given by where the matrix is the fundamental solution matrix that satisfies with initial condition .
- Given the state at any time , the state at any other time is given by the mapping
Remove ads
Estimation of the state-transition matrix
In the time-invariant case, we can define , using the matrix exponential, as . [4]
In the time-variant case, the state-transition matrix can be estimated from the solutions of the differential equation with initial conditions given by , , ..., . The corresponding solutions provide the columns of matrix . Now, from property 4, for all . The state-transition matrix must be determined before analysis on the time-varying solution can continue.
Remove ads
See also
References
Further reading
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads