**Stochastic cellular automata** or **probabilistic cellular automata** (**PCA**) or **random cellular automata** or **locally interacting Markov chains**^{[1]}^{[2]} are an important extension of cellular automaton. Cellular automata are a discrete-time dynamical system of interacting entities, whose state is discrete.

The state of the collection of entities is updated at each discrete time according to some simple homogeneous rule. All entities' states are updated in parallel or synchronously. Stochastic cellular automata are CA whose updating rule is a stochastic one, which means the new entities' states are chosen according to some probability distributions. It is a discrete-time random dynamical system. From the spatial interaction between the entities, despite the simplicity of the updating rules, complex behaviour may emerge like self-organization. As mathematical object, it may be considered in the framework of stochastic processes as an interacting particle system in discrete-time.
See ^{[3]}
for a more detailed introduction.

### Cellular Potts model

There is a strong connection^{[6]}
between probabilistic cellular automata and the cellular Potts model in particular when it is implemented in parallel.

Toom, A. L. (1978), *Locally Interacting Systems and their Application in Biology: Proceedings of the School-Seminar on Markov Interaction Processes in Biology, held in Pushchino, March 1976*, Lecture Notes in Mathematics, vol. 653, Springer-Verlag, Berlin-New York, ISBN 978-3-540-08450-1, MR 0479791 Boas, Sonja E. M.; Jiang, Yi; Merks, Roeland M. H.; Prokopiou, Sotiris A.; Rens, Elisabeth G. (2018). "Chapter 18: Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis". In Louis, P.-Y.; Nardi, F. R. (eds.). *Probabilistic Cellular Automata*. Springer. doi:10.1007/978-3-319-65558-1_18. hdl:1887/69811. ISBN 9783319655581.

- Almeida, R. M.; Macau, E. E. N. (2010), "Stochastic cellular automata model for wildland fire spread dynamics",
*9th Brazilian Conference on Dynamics, Control and their Applications, June 7–11, 2010*, vol. 285, p. 012038, doi:10.1088/1742-6596/285/1/012038.
- Clarke, K. C.; Hoppen, S. (1997), "A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area" (PDF),
*Environment and Planning B: Planning and Design*, **24** (2): 247–261, Bibcode:1997EnPlB..24..247C, doi:10.1068/b240247, S2CID 40847078.
- Mahajan, Meena Bhaskar (1992),
*Studies in language classes defined by different types of time-varying cellular automata*, Ph.D. dissertation, Indian Institute of Technology Madras.
- Nishio, Hidenosuke; Kobuchi, Youichi (1975), "Fault tolerant cellular spaces",
*Journal of Computer and System Sciences*, **11** (2): 150–170, doi:10.1016/s0022-0000(75)80065-1, MR 0389442.
- Smith, Alvy Ray III (1972), "Real-time language recognition by one-dimensional cellular automata",
*Journal of Computer and System Sciences*, **6** (3): 233–253, doi:10.1016/S0022-0000(72)80004-7, MR 0309383.
- Louis, P.-Y.; Nardi, F. R., eds. (2018).
*Probabilistic Cellular Automata*. Emergence, Complexity and Computation. Vol. 27. Springer. doi:10.1007/978-3-319-65558-1. hdl:2158/1090564. ISBN 9783319655581.
- Agapie, A.; Andreica, A.; Giuclea, M. (2014), "Probabilistic Cellular Automata",
*Journal of Computational Biology*, **21** (9): 699–708, doi:10.1089/cmb.2014.0074, PMC 4148062, PMID 24999557