Top Qs
Timeline
Chat
Perspective
Stolarsky mean
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the Stolarsky mean is a generalization of the logarithmic mean. It was introduced by Kenneth B. Stolarsky in 1975.[1]
Definition
For two positive real numbers and the Stolarsky Mean is defined as:
Remove ads
Derivation
Summarize
Perspective
It is derived from the mean value theorem, which states that a secant line, cutting the graph of a differentiable function at and , has the same slope as a line tangent to the graph at some point in the interval .
The Stolarsky mean is obtained by
when choosing .
Remove ads
Special cases
- is the minimum.
- is the geometric mean.
- is the logarithmic mean. It can be obtained from the mean value theorem by choosing .
- is the power mean with exponent .
- is the identric mean. It can be obtained from the mean value theorem by choosing .
- is the arithmetic mean.
- is a connection to the quadratic mean and the geometric mean.
- is the maximum.
Remove ads
Generalizations
One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the nth derivative. One obtains
- for .
Remove ads
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads