Subthreshold slope

Feature of a MOSFET's current–voltage characteristic From Wikipedia, the free encyclopedia

The subthreshold slope is a feature of a MOSFET's current–voltage characteristic.

In the subthreshold region, the drain current behaviour—though being controlled by the gate terminal—is similar to the exponentially decreasing current of a forward biased diode. Therefore, a plot of drain current versus gate voltage with drain, source, and bulk voltages fixed will exhibit approximately log-linear behaviour in this MOSFET operating regime. Its slope is the subthreshold slope.

The subthreshold slope is also the reciprocal value of the subthreshold swing Ss-th which is usually given as:[1]

= depletion layer capacitance

= gate-oxide capacitance

= thermal voltage

The minimum subthreshold swing of a conventional device can be found by letting and/or , which yield (known as thermionic limit) and 60 mV/dec at room temperature (300 K). A typical experimental subthreshold swing for a scaled MOSFET at room temperature is ~70 mV/dec, slightly degraded due to short-channel MOSFET parasitics.[2]

A dec (decade) corresponds to a 10 times increase of the drain current ID.

A device characterized by steep subthreshold slope exhibits a faster transition between off (low current) and on (high current) states.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.