Top Qs
Timeline
Chat
Perspective

Successor ordinal

Operation on ordinal numbers From Wikipedia, the free encyclopedia

Remove ads

In set theory, the successor of an ordinal number α is the smallest ordinal number greater than α. An ordinal number that is a successor is called a successor ordinal. The ordinals 1, 2, and 3 are the first three successor ordinals and the ordinals ω+1, ω+2 and ω+3 are the first three infinite successor ordinals.

Properties

Every ordinal other than 0 is either a successor ordinal or a limit ordinal.[1]

In Von Neumann's model

Using von Neumann's ordinal numbers (the standard model of the ordinals used in set theory), the successor S(α) of an ordinal number α is given by the formula[1]

Since the ordering on the ordinal numbers is given by α < β if and only if α  β, it is immediate that there is no ordinal number between α and S(α), and it is also clear that α < S(α).

Remove ads

Ordinal addition

The successor operation can be used to define ordinal addition rigorously via transfinite recursion as follows:

and for a limit ordinal λ

In particular, S(α) = α + 1. Multiplication and exponentiation are defined similarly.

Topology

The successor points and zero are the isolated points of the class of ordinal numbers, with respect to the order topology.[2]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads