Sudan function

From Wikipedia, the free encyclopedia

In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function.

In 1926, David Hilbert conjectured that every computable function was primitive recursive. This was refuted by Gabriel Sudan and Wilhelm Ackermann both his students using different functions that were published in quick succession: Sudan in 1927,[1] Ackermann in 1928.[2]

The Sudan function is the earliest published example of a recursive function that is not primitive recursive.[3]

Definition

Summarize
Perspective

The last equation can be equivalently written as

.[4]

Computation

Summarize
Perspective

These equations can be used as rules of a term rewriting system (TRS).

The generalized function leads to the rewrite rules

At each reduction step the rightmost innermost occurrence of F is rewritten, by application of one of the rules (r1) - (r3).

Calude (1988) gives an example: compute .[5]

The reduction sequence is[6]

    
    
    
    
    
    
    
    
    
    
    
    
    

Value tables

Summarize
Perspective

Values of F0

F0(x, y) = x + y

More information y \ x ...
y \ x012345678910
0 012345678910
1 1234567891011
2 23456789101112
3 345678910111213
4 4567891011121314
5 56789101112131415
6 678910111213141516
7 7891011121314151617
8 89101112131415161718
9 910111213141516171819
10 1011121314151617181920
Close

Values of F1

F1(x, y) = 2y · (x + 2) − y − 2

More information y \ x ...
y \ x012345678910
0 012345678910
1 13579111315171921
2 48121620242832364044
3 1119273543515967758391
4 2642587490106122138154170186
5 5789121153185217249281313345377
6 120184248312376440504568632696760
7 24737550363175988710151143127113991527
8 502758101412701526178220382294255028063062
9 10131525203725493061357340854597510956216133
10 20363060408451086132715681809204102281125212276
Close

Values of F2

More information y \ x ...
y \ x01234567
0 01234567
x
1 F1 (F2(0, 0),  
F2(0, 0)+1)
F1 (F2(1, 0),  
F2(1, 0)+1)
F1 (F2(2, 0),  
F2(2, 0)+1)
F1 (F2(3, 0),  
F2(3, 0)+1)
F1 (F2(4, 0),  
F2(4, 0)+1)
F1 (F2(5, 0),  
F2(5, 0)+1)
F1 (F2(6, 0),  
F2(6, 0)+1)
F1 (F2(7, 0),  
F2(7, 0)+1)
F1(0, 1) F1(1, 2) F1(2, 3) F1(3, 4) F1(4, 5) F1(5, 6) F1(6, 7) F1(7, 8)
18277418544010152294
2x+1 · (x + 2) − x − 3
≈ 10lg 2·(x+1) + lg(x+2)
2 F1 (F2(0, 1),  
F2(0, 1)+2)
F1 (F2(1, 1),  
F2(1, 1)+2)
F1 (F2(2, 1),  
F2(2, 1)+2)
F1 (F2(3, 1),  
F2(3, 1)+2)
F1 (F2(4, 1),  
F2(4, 1)+2)
F1 (F2(5, 1),  
F2(5, 1)+2)
F1 (F2(6, 1),  
F2(6, 1)+2)
F1 (F2(7, 1),  
F2(7, 1)+2)
F1(1, 3) F1(8, 10) F1(27, 29) F1(74, 76) F1(185, 187) F1(440, 442) F1(1015, 1017) F1(2294, 2296)
19 10228 15569256417 ≈ 5,742397643 · 1024 ≈ 3,668181327 · 1058 ≈ 5,019729940 · 10135 ≈ 1,428323374 · 10309 ≈ 3,356154368 · 10694
22x+1·(x+2) − x − 1 · (2x+1·(x+2) − x − 1) − (2x+1·(x+2) − x + 1)
≈ 10lg 2 · (2x+1·(x+2) − x − 1) + lg(2x+1·(x+2) − x − 1) ≈ 10lg 2 · 2x+1·(x+2) + lg(2x+1·(x+2)) ≈ 10lg 2 · (2x+1·(x+2)) = 1010lg lg 2 + lg 2·(x+1) + lg(x+2) ≈ 1010lg 2·(x+1) + lg(x+2)
3 F1 (F2(0, 2),  
F2(0, 2)+3)
F1 (F2(1, 2),  
F2(1, 2)+3)
F1 (F2(2, 2),  
F2(2, 2)+3)
F1 (F2(3, 2),  
F2(3, 2)+3)
F1 (F2(4, 2),  
F2(4, 2)+3)
F1 (F2(5, 2),  
F2(5, 2)+3)
F1 (F2(6, 2),  
F2(6, 2)+3)
F1 (F2(7, 2),  
F2(7, 2)+3)
F1(F1(1,3),  
F1(1,3)+3)
F1(F1(8,10),  
F1(8,10)+3)
F1(F1(27,29),  
F1(27,29)+3)
F1(F1(74,76),  
F1(74,76)+3)
F1(F1(185,187),  
F1(185,187)+3)
F1(F1(440,442),  
F1(440,442)+3)
F1(F1(1015,1017),  
F1(1015,1017)+3)
F1(F1(2294,2297),  
F1(2294,2297)+3)
F1(19, 22) F1(10228, 10231) F1(15569256417,
15569256420)
F1(≈6·1024, ≈6·1024) F1(≈4·1058, ≈4·1058) F1(≈5·10135, ≈5·10135) F1(≈10309, ≈10309) F1(≈3·10694, ≈3·10694)
88080360 ≈ 7,04 · 103083 ≈ 7,82 · 104686813201 ≈ 101,72·1024 ≈ 101,10·1058 ≈ 101,51·10135 ≈ 104,30·10308 ≈ 101,01·10694
longer expression, starts with 222x+1 an, ≈ 101010lg 2·(x+1) + lg(x+2)
4 F1 (F2(0, 3),  
F2(0, 3)+4)
F1 (F2(1, 3),  
F2(1, 3)+4)
F1 (F2(2, 3),  
F2(2, 3)+4)
F1 (F2(3, 3),  
F2(3, 3)+4)
F1 (F2(4, 3),  
F2(4, 3)+4)
F1 (F2(5, 3),  
F2(5, 3)+4)
F1 (F2(6, 3),  
F2(6, 3)+4)
F1 (F2(7, 3),  
F2(7, 3)+4)
F1 (F1(19, 22),  
F1(19, 22)+4)
F1 (F1(10228,  
10231),  
F1(10228,  
10231)+4)
F1 (F1(15569256417,  
15569256420),  
F1(15569256417,  
15569256420)+4)
F1 (F1(≈5,74·1024, ≈5,74·1024),
F1(≈5,74·1024, ≈5,74·1024))
F1 (F1(≈3,67·1058, ≈3,67·1058),
F1(≈3,67·1058, ≈3,67·1058))
F1 (F1(≈5,02·10135, ≈5,02·10135),
F1(≈5,02·10135, ≈5,02·10135))
F1 (F1(≈1,43·10309, ≈1,43·10309),
F1(≈1,43·10309, ≈1,43·10309))
F1 (F1(≈3,36·10694, ≈3,36·10694),
F1(≈3,36·10694, ≈3,36·10694))
F1(88080360,
88080364)
F1(10230·210231−10233,
10230·210231−10229)
≈ 3,5 · 1026514839
much longer expression, starts with 2222x+1 an, ≈ 10101010lg 2·(x+1) + lg(x+2)
Close

Values of F3

More information y \ x ...
y \ x01234
0 01234
x
1 F2 (F3(0, 0),  
F3(0, 0)+1)
F2 (F3(1, 0),  
F3(1, 0)+1)
F2 (F3(2, 0),  
F3(2, 0)+1)
F2 (F3(3, 0),  
F3(3, 0)+1)
F2 (F3(4, 0),  
F3(4, 0)+1)
F2(0, 1) F2(1, 2) F2(2, 3) F2(3, 4) F2(4, 5)
1 10228 ≈ 7,82 · 104686813201
No closed expressions possible within the framework of normal mathematical notation
2 F3 (F4(0, 1),  
F4(0, 1)+2)
F3 (F4(1, 1),  
F4(1, 1)+2)
F3 (F4(2, 1),  
F4(2, 1)+2)
F3 (F4(3, 1),  
F4(3, 1)+2)
F3 (F4(4, 1),  
F4(4, 1)+2)
F3 (1, 3) F3 (10228, 10230) F3 (≈104686813201, 
≈104686813201)
 
No closed expressions possible within the framework of normal mathematical notation
Close

Notes and references

Bibliography

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.