Top Qs
Timeline
Chat
Perspective

Taylor expansions for the moments of functions of random variables

Concept in probability theory From Wikipedia, the free encyclopedia

Remove ads

In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.


A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

Remove ads

First moment

Summarize
Perspective

Given and , the mean and the variance of , respectively,[1] a Taylor expansion of the expected value of can be found via

Since the second term vanishes. Also, is . Therefore,

.

It is possible to generalize this to functions of more than one variable using multivariate Taylor expansions. For example,[2]

Remove ads

Second moment

Summarize
Perspective

Similarly,[1]

The above is obtained using a second order approximation, following the method used in estimating the first moment. It will be a poor approximation in cases where is highly non-linear. This is a special case of the delta method.

Indeed, we take .

With , we get . The variance is then computed using the formula .

An example is,[2]

The second order approximation, when X follows a normal distribution, is:[3]

Remove ads

First product moment

To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows. First, note that . Since a second-order expansion for has already been derived above, it only remains to find . Treating as a two-variable function, the second-order Taylor expansion is as follows:

Taking expectation of the above and simplifying—making use of the identities and —leads to . Hence,

Remove ads

Random vectors

If X is a random vector, the approximations for the mean and variance of are given by[4]

Here and denote the gradient and the Hessian matrix respectively, and is the covariance matrix of X.

Remove ads

See also

Notes

Further reading

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads