Trigonometric functions of matrices
Important functions in solving differential equations From Wikipedia, the free encyclopedia
The trigonometric functions (especially sine and cosine) for complex square matrices occur in solutions of second-order systems of differential equations.[1] They are defined by the same Taylor series that hold for the trigonometric functions of complex numbers:[2]
with Xn being the nth power of the matrix X, and I being the identity matrix of appropriate dimensions.
Equivalently, they can be defined using the matrix exponential along with the matrix equivalent of Euler's formula, eiX = cos X + i sin X, yielding
For example, taking X to be a standard Pauli matrix,
one has
as well as, for the cardinal sine function,
Properties
Summarize
Perspective
The analog of the Pythagorean trigonometric identity holds:[2]
If X is a diagonal matrix, sin X and cos X are also diagonal matrices with (sin X)nn = sin(Xnn) and (cos X)nn = cos(Xnn), that is, they can be calculated by simply taking the sines or cosines of the matrices's diagonal components.
The analogs of the trigonometric addition formulas are true if and only if XY = YX:[2]
Other functions
Summarize
Perspective
The tangent, as well as inverse trigonometric functions, hyperbolic and inverse hyperbolic functions have also been defined for matrices:[3]
and so on.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.