Truncated order-7 heptagonal tiling

Uniform Tiling of Hyperbolic From Wikipedia, the free encyclopedia

Truncated order-7 heptagonal tiling

In geometry, the truncated order-7 heptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{7,7}, constructed from one heptagons and two tetrakaidecagons around every vertex.

Truncated order-7 heptagonal tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration7.14.14
Schläfli symbolt{7,7}
Wythoff symbol2 7 | 7
Coxeter diagram
Symmetry group[7,7], (*772)
DualOrder-7 heptakis heptagonal tiling
PropertiesVertex-transitive
More information Symmetry: [7,7], (*772), [7,7]+, (772) ...
Uniform heptaheptagonal tilings
Symmetry: [7,7], (*772) [7,7]+, (772)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Thumb Thumb Thumb Thumb Thumb Thumb Thumb Thumb
{7,7} t{7,7}
r{7,7} 2t{7,7}=t{7,7} 2r{7,7}={7,7} rr{7,7} tr{7,7} sr{7,7}
Uniform duals
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
V77 V7.14.14 V7.7.7.7 V7.14.14 V77 V4.7.4.7 V4.14.14 V3.3.7.3.7
Close

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.


Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.