Top Qs
Timeline
Chat
Perspective
Unitary matrix
Complex matrix whose conjugate transpose equals its inverse From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U−1 equals its conjugate transpose U*, that is, if
where I is the identity matrix.
In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (), so the equation above is written
A complex matrix U is special unitary if it is unitary and its matrix determinant equals 1.
For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes.
Remove ads
Properties
Summarize
Perspective
For any unitary matrix U of finite size, the following hold:
- Given two complex vectors x and y, multiplication by U preserves their inner product; that is, ⟨Ux, Uy⟩ = ⟨x, y⟩.
- U is normal ().
- U is diagonalizable; that is, U is unitarily similar to a diagonal matrix, as a consequence of the spectral theorem. Thus, U has a decomposition of the form where V is unitary, and D is diagonal and unitary.
- The eigenvalues of lie on the unit circle, as does .
- The eigenspaces of are orthogonal.
- U can be written as U = eiH, where e indicates the matrix exponential, i is the imaginary unit, and H is a Hermitian matrix.
For any nonnegative integer n, the set of all n × n unitary matrices with matrix multiplication forms a group, called the unitary group U(n).
Every square matrix with unit Euclidean norm is the average of two unitary matrices.[1]
Remove ads
Equivalent conditions
Summarize
Perspective
If U is a square, complex matrix, then the following conditions are equivalent:[2]
- is unitary.
- is unitary.
- is invertible with .
- The columns of form an orthonormal basis of with respect to the usual inner product. In other words, .
- The rows of form an orthonormal basis of with respect to the usual inner product. In other words, .
- is an isometry with respect to the usual norm. That is, for all , where .
- is a normal matrix (equivalently, there is an orthonormal basis formed by eigenvectors of ) with eigenvalues lying on the unit circle.
Remove ads
Elementary constructions
Summarize
Perspective
2 × 2 unitary matrix
One general expression of a 2 × 2 unitary matrix is
which depends on 4 real parameters (the phase of a, the phase of b, the relative magnitude between a and b, and the angle φ). The form is configured so the determinant of such a matrix is
The sub-group of those elements with is called the special unitary group SU(2).
Among several alternative forms, the matrix U can be written in this form:
where and above, and the angles can take any values.
By introducing and has the following factorization:
This expression highlights the relation between 2 × 2 unitary matrices and 2 × 2 orthogonal matrices of angle θ.
Another factorization is[3]
Many other factorizations of a unitary matrix in basic matrices are possible.[4][5][6][7][8][9]
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads