Univalent function
Mathematical concept From Wikipedia, the free encyclopedia
In mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is injective.[1][2]
Examples
The function is univalent in the open unit disc, as implies that . As the second factor is non-zero in the open unit disc, so is injective.
Basic properties
One can prove that if and are two open connected sets in the complex plane, and
is a univalent function such that (that is, is surjective), then the derivative of is never zero, is invertible, and its inverse is also holomorphic. More, one has by the chain rule
for all in
Comparison with real functions
Summarize
Perspective
For real analytic functions, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function
given by . This function is clearly injective, but its derivative is 0 at , and its inverse is not analytic, or even differentiable, on the whole interval . Consequently, if we enlarge the domain to an open subset of the complex plane, it must fail to be injective; and this is the case, since (for example) (where is a primitive cube root of unity and is a positive real number smaller than the radius of as a neighbourhood of ).
See also
- Biholomorphic mapping – Bijective holomorphic function with a holomorphic inverse
- De Branges's theorem – Statement in complex analysis; formerly the Bieberbach conjecture
- Koebe quarter theorem – Statement in complex analysis
- Riemann mapping theorem – Mathematical theorem
- Nevanlinna's criterion – Characterization of starlike univalent holomorphic functions
Note
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.