Top Qs
Timeline
Chat
Perspective
User:Praseodymium-141/Unbipentium
Chemical elements with atomic numbers from 104 to 120 From Wikipedia, the free encyclopedia
Remove ads
Unbipentum, also known as element 125 or eka-neptunium, is the hypothetical chemical element in the periodic table with the placeholder symbol of Ubt and atomic number 125[2]. Unbipentium and Ubp are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiquadium as the second element of the superactinides and the fifth element of the 8th period. Similarly to unbibium and unbiunium, it is expected to fall within the range of the island of stability.
Since there are no natural isotopes of this element, it would have to be generated (synthesized) in an artificial way through nuclear reactions. The name is provisional and is derived from the ordinal number. As of 2022, the synthesis of unbipentium has only been attempted once, and no naturally occurring isotopes have been found to exist. There are currently no plans to attempt to synthesize unbipentium.
Unbipentium is expected to be in a new group of elements called superactinides[3]. These should behave differently from other groups of elements.
Chemically, unbipentium is expected to show some resemblance to promethium and neptunium. However, due to relativistic effects, some of these properties may differ from expected. Unbipentium is possibly the fifth element to have a G orbital, which would fill the 5th shell with three additional electrons.
Remove ads
Introduction
Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with an atomic number of at least 104.[4] The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium (atomic number 103). By definition, superheavy elements are also transuranium elements, i.e., having atomic numbers greater than that of uranium (92). Depending on the definition of group 3 adopted by authors, lawrencium may also be included to complete the 6d series.[5][6][7][8]
Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed a transactinide series ranging from element 104 to 121 and a superactinide series approximately spanning elements 122 to 153 (though more recent work suggests the end of the superactinide series to occur at element 157 instead). The transactinide seaborgium was named in his honor.[9][10]
Superheavies are radioactive and have only been obtained synthetically in laboratories. No macroscopic sample of any of these elements has ever been produced. Superheavies are all named after physicists and chemists or important locations involved in the synthesis of the elements.
IUPAC defines an element to exist if its lifetime is longer than 10−14 second, which is the time it takes for the atom to form an electron cloud.[11]
The known superheavies form part of the 6d and 7p series in the periodic table. Except for rutherfordium and dubnium (and lawrencium if it is included), all known isotopes of superheavies have half-lives of minutes or less. The element naming controversy involved elements 102–109. Some of these elements thus used systematic names for many years after their discovery was confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively soon after a discovery has been confirmed.)
Remove ads
Synthesis of superheavy nuclei

A superheavy[a] atomic nucleus is created in a nuclear reaction that combines two other nuclei of unequal size[b] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react.[17] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus.[18] The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the speed of light. However, if too much energy is applied, the beam nucleus can fall apart.[18]
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus.[18][19] This happens because during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed.[18] Each pair of a target and a beam is characterized by its cross section—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur.[c] This fusion may occur as a result of the quantum effect in which nuclei can tunnel through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.[18]
The resulting merger is an excited state[22]—termed a compound nucleus—and thus it is very unstable.[18] To reach a more stable state, the temporary merger may fission without formation of a more stable nucleus.[23] Alternatively, the compound nucleus may eject a few neutrons, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a gamma ray. This happens in about 10−16 seconds after the initial nuclear collision and results in creation of a more stable nucleus.[23] The definition by the IUPAC/IUPAP Joint Working Party (JWP) states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10−14 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire electrons and thus display its chemical properties.[24][d]
Remove ads
Early predictions
The heaviest element known at the end of the 19th century was uranium, with an atomic mass of about 240 (now known to be 238) amu. Accordingly, it was placed in the last row of the periodic table; this fueled speculation about the possible existence of elements heavier than uranium and why A = 240 seemed to be the limit. Following the discovery of the noble gases, beginning with argon in 1895, the possibility of heavier members of the group was considered. Danish chemist Julius Thomsen proposed in 1895 the existence of a sixth noble gas with Z = 86, A = 212 and a seventh with Z = 118, A = 292, the last closing a 32-element period containing thorium and uranium.[55] In 1913, Swedish physicist Johannes Rydberg extended Thomsen's extrapolation of the periodic table to include even heavier elements with atomic numbers up to 460, but he did not believe that these superheavy elements existed or occurred in nature.[56]
In 1914, German physicist Richard Swinne proposed that elements heavier than uranium, such as those around Z = 108, could be found in cosmic rays. He suggested that these elements may not necessarily have decreasing half-lives with increasing atomic number, leading to speculation about the possibility of some longer-lived elements at Z = 98–102 and Z = 108–110 (though separated by short-lived elements). Swinne published these predictions in 1926, believing that such elements might exist in Earth's core, iron meteorites, or the ice caps of Greenland where they had been locked up from their supposed cosmic origin.[57]
Characteristics
Due to their short half-lives (for example, the most stable known isotope of seaborgium has a half-life of 14 minutes, and half-lives decrease with increasing atomic number) and the low yield of the nuclear reactions that produce them, new methods have had to be created to determine their gas-phase and solution chemistry based on very small samples of a few atoms each. Relativistic effects become very important in this region of the periodic table, causing the filled 7s orbitals, empty 7p orbitals, and filling 6d orbitals to all contract inward toward the atomic nucleus. This causes a relativistic stabilization of the 7s electrons and makes the 7p orbitals accessible in low excitation states.[10]
Elements 103 to 112, lawrencium to copernicium, form the 6d series of transition elements. Experimental evidence shows that elements 103–108 behave as expected for their position in the periodic table, as heavier homologs of lutetium through osmium. They are expected to have ionic radii between those of their 5d transition metal homologs and their actinide pseudohomologs: for example, Rf4+ is calculated to have ionic radius 76 pm, between the values for Hf4+ (71 pm) and Th4+ (94 pm). Their ions should also be less polarizable than those of their 5d homologs. Relativistic effects are expected to reach a maximum at the end of this series, at roentgenium (element 111) and copernicium (element 112). Nevertheless, many important properties of the transactinides are still not yet known experimentally, though theoretical calculations have been performed.[10]
Elements 113 to 118, nihonium to oganesson, should form a 7p series, completing the seventh period in the periodic table. Their chemistry will be greatly influenced by the very strong relativistic stabilization of the 7s electrons and a strong spin–orbit coupling effect "tearing" the 7p subshell apart into two sections, one more stabilized (7p1/2, holding two electrons) and one more destabilized (7p3/2, holding four electrons). Lower oxidation states should be stabilized here, continuing group trends, as both the 7s and 7p1/2 electrons exhibit the inert-pair effect. These elements are expected to largely continue to follow group trends, though with relativistic effects playing an increasingly larger role. In particular, the large 7p splitting results in an effective shell closure at flerovium (element 114) and a hence much higher than expected chemical activity for oganesson (element 118).[10]
Oganesson is the last known element. The next two elements, 119 and 120, should form an 8s series and be an alkali and alkaline earth metal respectively. The 8s electrons are expected to be relativistically stabilized, so that the trend toward higher reactivity down these groups will reverse and the elements will behave more like their period 5 homologs, rubidium and strontium. The 7p3/2 orbital is still relativistically destabilized, potentially giving these elements larger ionic radii and perhaps even being able to participate chemically. In this region, the 8p electrons are also relativistically stabilized, resulting in a ground-state 8s28p1 valence electron configuration for element 121. Large changes are expected to occur in the subshell structure in going from element 120 to element 121: for example, the radius of the 5g orbitals should drop drastically, from 25 Bohr units in element 120 in the excited [Og] 5g1 8s1 configuration to 0.8 Bohr units in element 121 in the excited [Og] 5g1 7d1 8s1 configuration, in a phenomenon called "radial collapse". Element 122 should add either a further 7d or a further 8p electron to element 121's electron configuration. Elements 121 and 122 should be similar to actinium and thorium respectively.[10]
At element 121, the superactinide series is expected to begin, when the 8s electrons and the filling 8p1/2, 7d3/2, 6f5/2, and 5g7/2 subshells determine the chemistry of these elements. Complete and accurate calculations are not available for elements beyond 123 because of the extreme complexity of the situation:[58] the 5g, 6f, and 7d orbitals should have about the same energy level, and in the region of element 160 the 9s, 8p3/2, and 9p1/2 orbitals should also be about equal in energy. This will cause the electron shells to mix so that the block concept no longer applies very well, and will also result in novel chemical properties that will make positioning these elements in a periodic table very difficult.[10]
Remove ads
Beyond superheavy elements
It has been suggested that elements beyond Z = 126 be called beyond superheavy elements.[59] Other sources refer to elements around Z = 164 as hyperheavy elements.[60]
See also
- Bose–Einstein condensate (also known as Superatom)
- Island of stability
Notes
- In nuclear physics, an element is called heavy if its atomic number is high; lead (element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 103 (although there are other definitions, such as atomic number greater than 100[12] or 112;[13] sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical superactinide series).[14] Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
- In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric 136Xe + 136Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as 2.5 pb.[15] In comparison, the reaction that resulted in hassium discovery, 208Pb + 58Fe, had a cross section of ~20 pb (more specifically, 19+19
-11 pb), as estimated by the discoverers.[16] - The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the 28
14Si + 1
0n → 28
13Al + 1
1p reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.[20] - This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.[25]
- This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle.[27] Such separation can also be aided by a time-of-flight measurement and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.[28]
- Not all decay modes are caused by electrostatic repulsion. For example, beta decay is caused by the weak interaction.[35]
- It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to form one.[40]
- Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei.[45] The first direct measurement of mass of a superheavy nucleus was reported in 2018 at LBNL.[46] Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).[47]
- If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay must be preserved, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former).[36] The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector.
- Spontaneous fission was discovered by Soviet physicist Georgy Flerov,[48] a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility.[49] In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles.[25] They thus preferred to link new isotopes to the already known ones by successive alpha decays.[48]
- For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in Stockholm, Stockholm County, Sweden.[50] There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, nobelium. It was later shown that the identification was incorrect.[51] The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later.[51] JINR insisted that they were the first to create the element and suggested a name of their own for the new element, joliotium;[52] the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty").[53] This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992.[53] The name "nobelium" remained unchanged on account of its widespread usage.[54]
Remove ads
Bibliography
- Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C. 41 (3). 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
pp. 030001-1–030001-17, pp. 030001-18–030001-138, Table I. The NUBASE2016 table of nuclear and decay properties - Beiser, A. (2003). Concepts of modern physics (6th ed.). McGraw-Hill. ISBN 978-0-07-244848-1. OCLC 48965418.
- Hoffman, D. C.; Ghiorso, A.; Seaborg, G. T. (2000). The Transuranium People: The Inside Story. World Scientific. ISBN 978-1-78-326244-1.
- Kragh, H. (2018). From Transuranic to Superheavy Elements: A Story of Dispute and Creation. Springer. ISBN 978-3-319-75813-8.
- Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). "Future of superheavy element research: Which nuclei could be synthesized within the next few years?". Journal of Physics: Conference Series. 420 (1). 012001. arXiv:1207.5700. Bibcode:2013JPhCS.420a2001Z. doi:10.1088/1742-6596/420/1/012001. ISSN 1742-6588.
Remove ads
History
Predicted properties
Synthesis attempts
Notes
See also
References
Extended periodic table
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads