Egallatera triangulo estas triangulo, kiu havas ĉiujn tri laterojn egale longajn. Ecoj Krom ecoj de triangulo komunaj por ĉiu triangulo la egallatera triangulo havas plie tiujn ĉi ecojn: Egallatera triangulo estas akse simetriaj kun tri aksoj de simetrio, kiuj kondukas ĉiam tra vertico kaj tra centro de la kontraŭa latero. Ĉiuj internaj anguloj estas kongruaj kaj ilia grandeco estas 60°. Perimetro Perimetron de egallatera triangulo o oni kalkulas laŭ formulo: o = 3 . a , kie a estas latero de egallatera triangulo Areo Se la triangulo estas egallatera, la areo estas egala al unu kvarono de la kvadrato de unu latero por la kvadrata radiko de 3: A = 3 ⋅ a 2 4 {\displaystyle A={\frac {{\sqrt {3}}\cdot a^{2}}{4}}} kie a estas unu latero de la triangulo. Bazaj rilatoj = {\displaystyle =\,} a {\displaystyle a\,} h {\displaystyle h\,} S {\displaystyle S\,} r {\displaystyle r\,} R {\displaystyle R\,} L r {\displaystyle L_{r}\,} L R {\displaystyle L_{R}\,} S r {\displaystyle S_{r}\,} S R {\displaystyle S_{R}\,} a {\displaystyle a\,} a {\displaystyle a\,} 2 h 3 3 {\displaystyle {\frac {2h{\sqrt {3}}}{3}}} 2 S 3 3 {\displaystyle 2{\sqrt {\frac {S{\sqrt {3}}}{3}}}} 2 r 3 {\displaystyle 2r{\sqrt {3}}} R 3 {\displaystyle R{\sqrt {3}}} L r 3 π {\displaystyle {\frac {L_{r}{\sqrt {3}}}{\pi }}} L R 3 2 π {\displaystyle {\frac {L_{R}{\sqrt {3}}}{2\pi }}} 2 3 S r π {\displaystyle 2{\sqrt {\frac {3S_{r}}{\pi }}}} 3 S R π {\displaystyle {\sqrt {\frac {3S_{R}}{\pi }}}} h {\displaystyle h\,} a 3 2 {\displaystyle {\frac {a{\sqrt {3}}}{2}}} h {\displaystyle h\,} S 3 {\displaystyle {\sqrt {S{\sqrt {3}}}}} 3 r {\displaystyle 3r\,} 3 2 R {\displaystyle {\frac {3}{2}}R} 3 L r 2 π {\displaystyle {\frac {3L_{r}}{2\pi }}} 3 L R 4 π {\displaystyle {\frac {3L_{R}}{4\pi }}} 3 S r π {\displaystyle 3{\sqrt {\frac {S_{r}}{\pi }}}} 3 2 S R π {\displaystyle {\frac {3}{2}}{\sqrt {\frac {S_{R}}{\pi }}}} S {\displaystyle S\,} a 2 3 4 {\displaystyle {\frac {a^{2}{\sqrt {3}}}{4}}} h 2 3 3 {\displaystyle {\frac {h^{2}{\sqrt {3}}}{3}}} S {\displaystyle S\,} 3 r 2 3 {\displaystyle 3r^{2}{\sqrt {3}}} 3 R 2 3 4 {\displaystyle {\frac {3R^{2}{\sqrt {3}}}{4}}} 3 L r 2 3 4 π 2 {\displaystyle {\frac {3{L_{r}}^{2}{\sqrt {3}}}{4\pi ^{2}}}} 3 L R 2 3 16 π 2 {\displaystyle {\frac {3{L_{R}}^{2}{\sqrt {3}}}{16\pi ^{2}}}} 3 S r 3 π {\displaystyle {\frac {3S_{r}{\sqrt {3}}}{\pi }}} 3 S R 3 4 π {\displaystyle {\frac {3S_{R}{\sqrt {3}}}{4\pi }}} r {\displaystyle r\,} a 3 6 {\displaystyle {\frac {a{\sqrt {3}}}{6}}} 1 3 h {\displaystyle {\frac {1}{3}}h} S 3 3 {\displaystyle {\frac {\sqrt {S{\sqrt {3}}}}{3}}} r {\displaystyle r\,} 1 2 R {\displaystyle {\frac {1}{2}}R} L r 2 π {\displaystyle {\frac {L_{r}}{2\pi }}} L R 4 π {\displaystyle {\frac {L_{R}}{4\pi }}} S r π {\displaystyle {\sqrt {\frac {S_{r}}{\pi }}}} S R 4 π {\displaystyle {\sqrt {\frac {S_{R}}{4\pi }}}} R {\displaystyle R\,} a 3 3 {\displaystyle {\frac {a{\sqrt {3}}}{3}}} 2 3 h {\displaystyle {\frac {2}{3}}h} 2 S 3 3 {\displaystyle {\frac {2{\sqrt {S{\sqrt {3}}}}}{3}}} 2 r {\displaystyle 2r\,} R {\displaystyle R\,} L r π {\displaystyle {\frac {L_{r}}{\pi }}} L R 2 π {\displaystyle {\frac {L_{R}}{2\pi }}} 2 S r π {\displaystyle 2{\sqrt {\frac {S_{r}}{\pi }}}} S R π {\displaystyle {\sqrt {\frac {S_{R}}{\pi }}}} L r {\displaystyle L_{r}\,} π a 3 3 {\displaystyle {\frac {\pi a{\sqrt {3}}}{3}}} 2 π h 3 {\displaystyle {\frac {2\pi h}{3}}} 2 π S 3 3 {\displaystyle {\frac {2\pi {\sqrt {S{\sqrt {3}}}}}{3}}} 2 π r {\displaystyle 2\pi r} π R {\displaystyle \pi R} L r {\displaystyle L_{r}\,} L R 2 {\displaystyle {\frac {L_{R}}{2}}} 2 π S r {\displaystyle 2{\sqrt {\pi S_{r}}}} π S R {\displaystyle {\sqrt {\pi S_{R}}}} L R {\displaystyle L_{R}\,} 2 π a 3 3 {\displaystyle {\frac {2\pi a{\sqrt {3}}}{3}}} 4 π h 3 {\displaystyle {\frac {4\pi h}{3}}} 4 π S 3 3 {\displaystyle {\frac {4\pi {\sqrt {S{\sqrt {3}}}}}{3}}} 4 π r {\displaystyle 4\pi r} 2 π R {\displaystyle 2\pi R} 2 L r {\displaystyle 2L_{r}} L R {\displaystyle L_{R}\,} 4 π S r {\displaystyle 4{\sqrt {\pi S_{r}}}} 2 π S R {\displaystyle 2{\sqrt {\pi S_{R}}}} S r {\displaystyle S_{r}\,} π a 2 12 {\displaystyle {\frac {\pi a^{2}}{12}}} π h 2 9 {\displaystyle {\frac {\pi h^{2}}{9}}} π S 3 9 {\displaystyle {\frac {\pi S{\sqrt {3}}}{9}}} π r 2 {\displaystyle \pi r^{2}} π R 2 4 {\displaystyle {\frac {\pi R^{2}}{4}}} L r 2 4 π {\displaystyle {\frac {{L_{r}}^{2}}{4\pi }}} L R 2 16 π {\displaystyle {\frac {{L_{R}}^{2}}{16\pi }}} S r {\displaystyle S_{r}\,} S R 4 {\displaystyle {\frac {S_{R}}{4}}} S R {\displaystyle S_{R}\,} π a 2 3 {\displaystyle {\frac {\pi a^{2}}{3}}} 4 π h 2 9 {\displaystyle {\frac {4\pi h^{2}}{9}}} 4 π S 3 9 {\displaystyle {\frac {4\pi S{\sqrt {3}}}{9}}} 4 π r 2 {\displaystyle 4\pi r^{2}} π R 2 {\displaystyle \pi R^{2}} L r 2 π {\displaystyle {\frac {{L_{r}}^{2}}{\pi }}} L R 2 4 π {\displaystyle {\frac {{L_{R}}^{2}}{4\pi }}} 4 S r {\displaystyle 4S_{r}} S R {\displaystyle S_{R}\,} Remove adsVidu ankaŭ Pluredro Triangulo Simetria triangulo Kategorio Egallatera triangulo en la Vikimedia Komunejo (Multrimedaj datumoj) Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads