Ĉirkaŭaĵo
malfermita subaro de topologia spaco enhavanta iun donitan punkton aŭ subaron From Wikipedia, the free encyclopedia
Remove ads
En topologio, ĉirkaŭaĵo[1] de iu punkto estas subaro, kiu “interne” enhavas la punkton, en la senco ke la punkto estas entenata de malfermita subaro ene de la ĉirkaŭaĵo.
Difino
Se estas topologia spaco, kaj estas punkto en ĝi, do malfermita ĉirkaŭaĵo de estas malfermita aro kiu entenas :
- .
Ĉirkaŭaĵo de estas subaro de , kiu entenas almenaŭ unu malfermitan ĉirkaŭaĵon de :
- .
Pli ĝenerale, se estas topologia spaco, kaj estas subaro en ĝi, do malfermita ĉirkaŭaĵo de estas malfermita aro kiu entenas :
- .
Ĉirkaŭaĵo de estas subaro de , kiu entenas almenaŭ unu malfermitan ĉirkaŭaĵon de :
- .
Remove ads
Propraĵoj
Pri iu ajn punkto, ĉiu malfermita ĉirkaŭaĵo estas ĉirkaŭaĵo, sed ĉirkaŭaĵo, kiu ne estas malfermita, povas ekzisti.
Referencoj
Eksteraj ligiloj
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads