Top Qs
Línea de tiempo
Chat
Contexto
Axioma de regularidad
un axioma que postula que ciertos conjuntos «patológicos» no pueden existir De Wikipedia, la enciclopedia libre
Remove ads
En teoría de conjuntos, el axioma de regularidad o axioma de fundación es un axioma que postula que ciertos conjuntos «patológicos», como por ejemplo un conjunto que se contenga a sí mismo como elemento, no pueden existir. Fue propuesto por Von Neumann y Zermelo entre 1925 y 1930.[1]
Enunciado
Resumir
Contexto
La manera en la que se enuncia el axioma de regularidad es asegurando que cada conjunto posee un elemento que es disjunto con él:
|
Una manera equivalente de enunciar el axioma de regularidad es afirmando que todos los conjuntos son regulares, es decir, que la relación de pertenencia ∈ vista como un orden parcial tiene un elemento mínimo en todos los conjuntos. En particular, esto prohíbe la existencia de una sucesión infinita de conjuntos de la forma x1 ∋ x2 ∋ x3 ∋ ... De este modo, es sencillo entender que el axioma de regularidad prohíbe la existencia de conjuntos «patológicos» —no regulares— como por ejemplo:
- Un conjunto que sea su único elemento, . Se tendría entonces que x ∋ x ∋ ...
- Una pareja de conjuntos y y z tales que y = {z}, z = {y}. Se cumpliría y ∋ z ∋ y ∋ ...
Rango
Una de las consecuencias más importantes del axioma de regularidad es la clasificación de todos los conjuntos por «etapas», construidas a partir del conjunto vacío mediante la reiterada aplicación de la potenciación de conjuntos. Se define para cada ordinal, según sea 0, un ordinal sucesor o un ordinal límite:
Se tiene entonces el siguiente teorema:
|
Por esto, el axioma de regularidad se denota usualmente como «V = R», es decir, la clase universal (de la totalidad de conjuntos) y la clase R de los conjuntos regulares (la unión de todos los Rα) son idénticas. Puede clasificarse entonces cada conjunto regular en algún Rα:
|
Remove ads
Consistencia relativa
El axioma de regularidad (V = R) es totalmente independiente del resto de axiomas de ZF y NBG. La clase R de los conjuntos regulares es un modelo del resto de axiomas de ZF, luego de estos no puede probarse la existencia de un conjunto no regular, y asumir V = R es consistente. De modo similar, puede construirse un modelo del resto de ZF en el que aparezcan conjuntos del tipo , luego es imposible probar la regularidad de todos los conjuntos, y asumir V ≠ R también es consistente.
Remove ads
Referencias
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads