Top Qs
Línea de tiempo
Chat
Contexto

Distribución log-normal

De Wikipedia, la enciclopedia libre

Distribución log-normal
Remove ads

En probabilidad y estadística, la distribución normal logarítmica es una distribución de probabilidad continua de una variable aleatoria cuyo logaritmo está normalmente distribuido. Es decir, si es una variable aleatoria con una distribución normal, entonces tiene una distribución log-normal, es decir .

Datos rápidos Log-normal, Parámetros ...

Log-normal también se escribe log normal o lognormal.

Una variable puede ser modelada como log-normal si puede ser considerada como un producto multiplicativo de muchos pequeños factores independientes. Un ejemplo típico es un retorno a largo plazo de una inversión: puede considerarse como un producto de muchos retornos diarios.

Remove ads

Definición

Resumir
Contexto

Función de Densidad

Una variable aleatoria positiva tiene una distribución lognormal con parámetros y y escribimos , si el logaritmo natural de sigue una distribución normal con media y varianza , esto es

Sean y las funciones de distribución acumulada y de densidad de una normal estándar , entonces la función de densidad de probabilidad de la distribución log-normal está dada por:

Función de Distribución

La función de distribución acumulada es

donde es la función de distribución acumulada de una normal estándar .

La expresión anterior también puede ser escrita como

Log-normal Multivariada

Si es una distribución normal multivariada entonces tiene una distribución lognormal multivariante con media

y matriz de covarianza

Remove ads

Propiedades

Si entonces la variable aleatoria cumple algunas propiedades.

La media de es

La varianza de es

.
Remove ads

Relación con media y la desviación estándar geométrica

Resumir
Contexto

La distribución log-normal, la media geométrica, y la desviación estándar geométrica están relacionadas. En este caso, la media geométrica es igual a y la desviación estándar geométrica es igual a .

Si una muestra de datos determina que proviene de una población distribuida siguiendo una distribución log-normal, la media geométrica de la desviación estándar geométrica puede utilizarse para estimar los intervalos de confianza tal como la media aritmética y la desviación estándar se usan para estimar los intervalos de confianza para un dato distribuido normalmente.

Más información , ...

Donde la media geométrica y la desviación estándar geométrica

Remove ads

Momentos

Resumir
Contexto

Los primeros momentos son:

o de forma general:

Remove ads

Inferencia Estadística

Estimación de parámetros

Para determinar los estimadores por máxima verosimilitud de la distribución lognormal con parámetros y , podemos utilizar el mismo método que se utilizó para estimar los parámetros de una distribución normal. Notemos que

donde denota la función de densidad de la distribución normal entonces la función logarítmica de verosimilitud es

Dado que el primer término es constante respecto a y , ambas funciones logarítmicas de verosimilitud, y , obtienen su máximo con el mismo y , por lo tanto, utilizando los estimadores por máxima verosimilitud son idénticos a los de la distribución normal para observaciones

Para una finita, estos estimadores son in sesgados.

Thumb
Distribución log-normal ajustada a datos de lluvias máximas diarias por año.[1]
Remove ads

Aplicación

  • En la hidrología, se utiliza la distribución log-normal para analizar variables aleatorias como valores máximos de la precipitación y la descarga de ríos,[2] y además para describir épocas de sequía.[3]


La imagen azul ilustra un ejemplo del ajuste de la distribución log-normal a lluvias máximas diarias ordenadas, mostrando también la franja de 90% de confianza, basada en la distribución binomial. Las observaciones presentan los marcadores de posición, como parte del análisis de frecuencia acumulada.
Remove ads

Distribución relacionada

  • Si es una distribución normal entonces .
  • Si entonces .
  • Si son variables independentes log-normalmente distribuidas con el mismo parámetro μ y permitiendo que varíe σ, y , entonces Y es una variable distribuida log-normalmente como: .
  • Si entonces para .
Remove ads

Véase también

Software

Se puede usar software o programa de computadora para el ajuste de una distribución de probabilidad, incluyendo la lognormal, a una serie de datos:

Referencias

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads