Top Qs
Línea de tiempo
Chat
Contexto

Identidades de Cassini y Catalan

Identidades matemáticas ligadas a los números de Fibonacci De Wikipedia, la enciclopedia libre

Remove ads

La identidad de Cassini y la identidad de Catalan son relaciones matemáticas ligadas con los números de la sucesión de Fibonacci. La primera es un caso especial de la segunda, y afirma que para cada número n-ésimo de la sucesión de Fibonacci, se cumple que:[1]

La identidad de Catalan generaliza este principio:

La identidad de Vajda también supone una generalización de la primera:

Remove ads

Historia

La fórmula de Cassini fue descubierta en 1680 por Jean-Dominique Cassini, entonces director del Observatorio de París, siendo también demostrada de forma independiente por Robert Simson (1753). Eugène Charles Catalan encontró la identidad que lleva su nombre en 1879.

Prueba mediante cálculo matricial

Resumir
Contexto

Una prueba rápida de la identidad de Cassini se puede dar (Knuth, 1997, p. 81) al reconocer el lado izquierdo de la ecuación como el determinante de una matriz 2×2 de números de Fibonacci. El resultado es casi inmediato cuando se considera que la matriz es la potencia n de una matriz con determinante de valor 1:


Remove ads

Demostración por inducción

Resumir
Contexto

Sea

  • Caso base: ¿p(1)?
  • Paso inductivo: Dado ¿?

Por definición de la sucesión de Fibonacci, sabemos que para y .En el último caso implica , así que está definida).

Entonces:

como se quería demostrar.

Remove ads

Referencias

Bibliografía

Enlaces externos

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads