Top Qs
Línea de tiempo
Chat
Contexto

Teorema de Routh

De Wikipedia, la enciclopedia libre

Teorema de Routh
Remove ads

En geometría, el teorema de Routh[1] determina la relación de áreas entre un triángulo dado y un triángulo formado por la intersección de tres cevianas (una por cada vértice).

Thumb
El teorema de Routh permite calcular el área del triángulo ΔGHI (en rojo), formado por las tres cevianas AD, BE y CF.

Nomenclatura

Resumir
Contexto

Sea un triángulo cualquiera ΔABC (el exterior, amarillo en el gráfico), en cuyos lados AB, BC y CA se han marcado los puntos F, D y E, siendo estos tres últimos pies cualesquiera de las cevianas AD, BE y CF.

Los puntos I, G y H conforman al triángulo interior ΔIGH (color rojo el en el gráfico). Donde I, G y H son los puntos de intersección de las cevianas (AD con CF), (AD con BE) y (BE con CF).

Denominando a las razones de los respectivos segmentos de cada lado como r, s y t:

Llamando a las áreas de los triángulos ΔABC y ΔIGH respectivamente como AABC y AIGH.

Remove ads

Enunciado del teorema

Resumir
Contexto

Con la nomenclatura antes mencionada, el teorema de Routh afirma que el área del triángulo ΔIGH es:

El teorema de Ceva puede ser considerado como un caso especial del teorema de Routh. En el caso especial de que las tres cevianas AD, BE y CF se intersequen en un solo punto, entonces el área del triángulo ΔIGH es 0. Se puede concluir que ( r s t = 1 ), lo cual es justamente el enunciado del teorema de Ceva.

Remove ads

Véase también

Enlaces externos

Notas y referencias

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads