For faster navigation, this Iframe is preloading the Wikiwand page for Tuumasüntees.

Tuumasüntees

Allikas: Vikipeedia

Tuumasüntees ehk tuumade liitumine on kergete aatomituumade ühinemine raskemateks tuumadeks. Sõltuvalt tekkiva tuuma seoseenergiast võib selle reaktsiooni tulemusena energiat vabaneda (uue tuuma seoseenergia on väiksem kui ühinevate tuumade seoseenergia) või neelduda (uue tuuma seoseenergia on suurem kui ühinevatel tuumadel). Et raua ja nikli tuumadel on kõige väiksem seoseenergia, siis rauast väiksemate tuumade tekkimisel reeglina energiat vabaneb ja rauast suuremate tuumade tekkimine vajab välist lisaenergiat.

Tuumasüntees toimub looduslikult tähtedes ja on tähtede energia allikaks. Maa peal on tuumasünteesiks vajalikke tingimusi raske luua, sest tuumasünteesi toimumiseks peab liituvatele tuumadele eelnevalt andma energia, mis ületaks positiivse laenguga tuumade omavahelise elektromagnetilise tõukejõu (energiabarjääri).

Tootlikud tuumasünteesil töötavad elektrijaamad oleks võimalik lahendus inimkonna energiavajadustele, kuna selle jaoks vajalikku kütust saab mereveest ja liitiumist ning reaktsioon ei tekita kasvuhoonegaase ega radioaktiivseid jäätmeid[1]. Valdav enamik nukleosünteesist toimub tuumasünteesi teel.

Tuumasünteesireaktsiooni eeldused

Tuumasünteesireaktsiooni teostumiseks on tarvis ületada energiabarjäär (Coulombi barjäär) ja viia liituvad tuumad piisavalt lähedale, et nende vahel saaks tekkida seoseenergia. Sõltuvalt energiabarjääri ületamise meetodist eristatakse ka erinevaid tuumasünteesi reaktsiooni tüüpe.

Tuuma seoseenergia

Next.svg Pikemalt artiklis Seoseenergia

Nukleone hoiab aatomituumas koos tuumajõud, mis on tugeva vastasmõju teisene väljendus. Tuumajõud mõjuvad kõigi nukleonide vahel, kuid tuumajõu mõjuraadius on piiratud. Veidi lihtsustatult võib öelda, et iga nukleoni mõjutavad (olulisel määral) tuumajõuga ainult tema vahetus naabruses olevad nukleonid. Nukleonid, mis on igast küljest teiste tuuma nukleonidega ümbritsetud, on tugevamalt seotud kui tuuma välispinna nukleonid. Sellest tulenevalt kasvab tuuma seoseenergia uute nukleonide tuuma lisandumisel (täielikult ümbritsetud nukleonide arv kasvab kiiremini kui välispinnal olevate nukleonide arv).

Tuuma koostisesse kuuluvate positiivselt laetud prootonite vahel mõjub lisaks tuumajõule ka elektromagnetiline tõukejõud. See on tuumajõust palju väiksem, kuid tema ulatus ei ole piiratud. Seega mõjutab iga tuuma koosseisu kuuluvat prootonit kõigi teiste prootonite positiivne elektrilaeng. Suuremates tuumades hakkab see tõukejõud tuumajõu tõmbejõudu tasakaalustama ja isegi ületama. Nikkel-62, raud-58, raud-56 ja nikkel-60 on kõige suurema seoseenergiaga tuumad. Nendest suuremates tuumades hakkab seoseenergia tänu elektromagnetilisele tõukejõule aeglaselt vähenema. Ülisuurtes tuumades (transuraanid) on seoseenergia isegi negatiivne ja põhjustab tuuma kiire lagunemise.

Tuumasünteesi protsess saab iseseisvalt toimuda ainult juhul, kui liitunud tuumade seoseenergia on liituvate tuumade seoseenergiast suurem. Vastasel juhul on vaja tuumasünteesi toimumiseks anda tuumadele lisaenergiat[viide?].

Energiabarjäär tuumade liitumisel

Next.svg Pikemalt artiklis Coulombi barjäär
Deuteeriumi ja triitiumi ühinemise skemaatiline kujutus
Deuteeriumi ja triitiumi ühinemise skemaatiline kujutus

Eelpool kirjeldatust tuleneb ka energiabarjäär, mis takistab normaalsetes oludes tuumasünteesi. Selleks et tuumad liituksid, tuleb nad välise jõu abil viia piisavalt lähedale (teineteisega kontakti), et tuumajõu tõmme ületaks elektromagnetjõu tõuke. Et elektromagnetiline tõukejõud on võrdeline prootonite arvuga ühinevates tuumades, siis mida suuremad on ühinevad tuumad, seda kõrgem on nende liitumist takistav energiabarjäär. Seda barjääri kutsutakse ka Coulombi barjääriks.

Kõige väiksem energiabarjäär on ühe prootoniga tuumade ühinemisel (vesinik). Et kahest prootonist koosneva aatomituuma stabiliseerimiseks on vaja ka neutroneid, siis kõige väiksem energiabarjäär on vesinik-2 (deuteerium) ja vesinik-3 (triitium) ühinemisreaktsioonil, 0,01 MeV. Selle reaktsiooni tulemusena tekib heelium-5 ebastabiilne tuum, mis stabiilsuse saamiseks kiirgab kohe neutroni. Reaktsiooni tulemusena tekkinud neutron saab energia 14,1 MeV ja heeliumi tuuma jääkenergia on 3,5 MeV.

Tuumade kiirendamine

Raskete tuumade tekitamiseks kasutatakse enamasti aatomituumade kiirendamist. Sõltuvalt kiirendi tüübist eristatakse osake-märklaud reaktsiooni, kus kiirendatud tuumad põrkuvad vastu seisvat märklauda ja osake-osake reaktsiooni, kus põrgatatakse kokku kaks kiirendatud tuumade kimpu. esimest reaktsiooni on lihtsam teostada, kuid teine võimaldab suurema energiaga kokkupõrkeid.

Termotuumareaktsioon

Next.svg Pikemalt artiklis termotuumareaktsioon

Kergete aatomituumade (st. madala energiabarjääriga tuumade) puhul kasutatakse tuumadest koosneva plasma kuumutamist temperatuurini, mille puhul tuumad põrkuvad tänu nende soojusliikumisele. Seda, kõige levinumat meetodit, kutsutakse ka termotuumareaktsiooniks. Sõltuvalt kõrge temperatuuri saavutamise meetodist jagatakse termotuumareaktsioone omakorda alamliikideks, põhilised neist on:

  • Tokamak-reaktsioon, mille puhul toimub plasma magnetiline kokkusurumine.
  • Plasma kokkusurumine gravitatsiooni poolt, mis toimub ainult tähtedes.
  • Plahvatuslik kokkusurumine, kus tuumakütuse välispinnale suunatakse tugev laservalgus või elektronid või ioonide kiir, mis kuumendab kütuse väliskihti plahvatuseni, mis omakorda suruv kütuse sisemust piisavalt kokku tuumasünteesi toimumiseni.

Külm tuumasüntees katalüsaatorite abil

Next.svg Pikemalt artiklis müüon-katalüsaatormeetod

Külmaks nimetatakse tuumasünteesireaktsioone, mille puhul tuumade liitumine toimub plasma tekkimise temperatuurist madalamatel temperatuuridel (äärmuslikumatel juhtudel isegi toatemperatuuril). Tegelikult ei ole ükski tuumasünteesireaktsioon otseses mõttes külm, kuna reaktsiooni lõpptulemusena eraldub alati osa energiat soojusenergia näol.

Keemiliste katalüsaatorite kasutamisega üritatakse siduda deuteeriumi ioone, et neid seejärel elektrivoolu toimel teineteise vastu suruda. Väidetavalt on pallaadiumi elektroodidega rasket vett lõhustades märgatud ülemäärase soojuse eraldumist, kuid kindlaid tõendeid sellise tuumasünteesi toimumise kohta pole.

Küll aga on võimalik müüon-katalüsaatormeetodiga tuumasünteesi läbi viia. Selleks lastakse müüonil moodustada deuteeriumi tuumadega raske vesiniku aatom, mis haarab kaasa veel ühe raske vesiniku tuuma ja moodustab raske vesiniku molekuli D2, milles elektroni asemel tiirleb tuumade ümber müüon. Tulenevalt müüoni suurest massist on sellises aatomis tuumad teineteisele palju lähemal kui tavalises vesiniku aatomis. Eksisteerib piisavalt suur tõenäosus, et osades müüoniga seotud molekulides liiguvad tuumad teineteisele piisavalt lähedale, et tuumajõud suudavad (tunneliefekti abil) energiabarjääri ületada. Tulenevalt müüonite tekitamise keerukusest, nende lühikesest elueast (2,2 mikrosekundit) ja muudest kadudest kulub müüon-katalüsaatormeetodil tuumaühinemise tekitamiseks oluliselt rohkem energiat kui liitumise tulemusena vabaneb.

Energiabarjääri ületamise meetodid

Tuumasünteesi energiabarjääri ületamiseks vajalikku energiat saab tuumadele anda mitmel moel. Näiteks elementaarosakeste kiirendis tuumasid kiirendades, tuumadest koosnevat plasmat süttimistemperatuurini kuumutades (termotuumareaktsioon) või kasutades katalüsaatoreid.

Rakendamine

Energiat tootva tuumasünteesi kohta öeldakse naljatlevalt, et see on alati 20 aasta kaugusel[1]. Praegu suurim plaanitav tokamak-tüüpi tuumasünteesi eksperiment (ITER) ei alusta tööd enne 2026. aastat ning eeldatavalt kulub vähemalt kümnend, enne kui ITER-ile järgneb jätkuprojekt[1].

Ajalugu

Tuumasünteesi potentsiaal on teada juba 1920. aastast, kui F. W. Aston avastas, et neli H aatomit kaalub 0,7% rohkem kui üks He aatom, ning Sir Edmund Eddington mõistis, et tähtede valgus võibki tuleneda sellest masside erinevusest võrrandi E = mc2 järgi.

Kuuma plasma kokkusurumise eksperimendid algasid Ameerika Ühendriikides juba 1938. aastal, ent tõsisem uurimistöö toimus külma sõja ajal, kui uuriti just vesinikupommi kasutuselevõtu võimalusi. 1950. aastatel avaldati konverentsil "Aatomid rahu nimel" mitmed seni saladuses hoitud uurimustulemused ning loodi ka rahvusvahelised ühendused ala põhjalikumaks uurimiseks.

1968. aastal kuulutasid Nõukogude Liidu teadlased, et nende tokamak-reaktor Novosibirskis on tootnud enneolematu hulga energiat. Sellele järgnes tokamakide rajamine mitmetes riikides, näiteks suurima energiatootlikkusega reaktor, JET (Ühendatud Euroopa Toroid) Oxfordis, mis alustas küll tööd 1973. aastal pärast kümneaastast ettevalmistusperioodi[2].

Hobifusioneerid

Hobifusioneerideks kutsuvad end eraisikud, kes on loonud tuumasünteesi tootvaid masinaid. Selliseid inimesi oli 23. juuni 2010 seisuga 38, nende hulgas ka näiteks üks koristaja ja üks 14-aastane kooliõpilane[3][4]. Rahakulu reaktori kohta kõigub tugevasti, Thiago Olsonil kulus ~400 000 krooni, Mark Suppesil ~5 000 000 krooni.

Ohutus

Kuigi tuumasünteesi puhul ei ole ohtu, et toimub Tšornobõli-laadne katastroof, oleks tekkiv heelium-4 nõrgalt radioaktiivne ning ka kasutatavad reaktoriosad võivad olla radioaktiivsed. Samuti on kahjulikud eralduvad neutronid[5]. Praegu puuduvad paljuski piirangud tuumasünteesi kasutamiseks, mis lubas Mark Suppesil ehitada oma tuumareaktor otse New Yorgi Brooklyni linnaossa.[4]

Vaata ka

Viited

  1. 1,0 1,1 1,2 Michael Moyer: "Fusion Energy" Scientific American, juuni 2010
  2. History energyresearch.nl
  3. "Teen nuclear scientist fights terror" CNN, 1. september 2011
  4. 4,0 4,1 Matthew Danzico, "Extreme DIY: Building a homemade nuclear reactor in NYC" BBC News, 23. juuni 2010
  5. David Macaulay, "The new way things work", HMCo 1998, lk 172–173

Välislingid

{{bottomLinkPreText}} {{bottomLinkText}}
Tuumasüntees
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.