بالاترین سوالات
زمانبندی
چت
دیدگاه

زیرگروه نرمال

از ویکی‌پدیا، دانشنامه آزاد

زیرگروه نرمال
Remove ads

در جبر مجرد، یک زیرگروه نرمال (به انگلیسی: Normal Subgroup) (که به آن زیرگروه ناوردا یا زیرگروه خود-الحاقی نیز می‌گویند)[۱] زیرگروهی است که تحت مزدوج‌گیری توسط اعضای گروهی که داخل آن قرار دارد ناورداست. به بیان دیگر، یک زیرگروه از گروهی چون در نرمال است اگر و تنها اگر برای تمام و نتیجه شود . نمادگذاری رایج برای زیرگروه نرمال است.

زیرگروه‌های نرمال مهم‌اند، چرا که آن‌ها(و فقط آن‌ها) را می‌توان برای ساخت گروه‌های خارج قسمتیِ گروهِ داده شده مورد استفاده قرار داد. به علاوه، زیرگروه‌‎های نرمال دقیقاً هسته‌های همریختی‌های گروهی با دامنه اند؛ لذا می‌توان از این زیرگروه‌ها به طور ذاتی برای طبقه‌بندی چنین همریختی‌هایی بهره جست.

اواریسته گالوا اولین کسی بود که متوجه اهمیت وجود زیرگروه‌های نرمال شد.[۲]

Remove ads

تعاریف

یک زیرگروه از را زیرگروه نرمال از گویند، اگر تحت مزدوج‌گیری ناوردا باشد؛ یعنی مزدوج عنصر دلخواهی از تحت عنصر دلخواهی از همیشه در قرار بگیرد.[۳] نمادگذاری این رابطه است.

شرایط معادل

برای هر زیرگروه از ، شرایط زیر معادل‌اند با این که زیر گروه نرمالی از باشد. بنابراین هر کدام از آن‌ها را می‌توان به عنوان تعریف زیرگروه نرمال به کار برد:

  • تصویر تزویجی (تصویر تحت مزدوج گیری) تحت هر عنصر زیرمجموعه‌ای از باشد.[۴]
  • تصویر تزویجی تحت هر عنصر برابر باشد.[۴]
  • برای تمام ، همدسته‌های چپ و راست و برابر باشند.[۴]
  • همدسته‌های چپ و راست در با هم یکی شوند.[۴]
  • ضرب یک عنصر از همدسته چپ نسبت به و یک عنصر از همدسته چپ نسبت به ، عنصری از همدسته چپ نسبت به باشد: یعنی اگر از و نتیجه شود که .
  • برابر اجتماع رده‌های تزویجی باشد.[۲]
  • تحت درون‌ریختی‌های داخلی از حفظ شود.[۵]
  • همریختی گروهی چون وجود دارد چنان که هسته آن باشد.[۲]
  • برای تمام و ، جابجاگر در باشد.
  • هر دو عنصر گروه در رابطه زیر صدق کنند:
Remove ads

پانویس

منابع

پیوند به بیرون

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads