Harmonique (musique)

composante d’un son périodique, dont la fréquence est un multiple entier d'une fréquence fondamentale / De Wikipedia, l'encyclopédie libre

En acoustique, un partiel harmonique est une composante d’un son périodique, dont la fréquence est un multiple entier d'une fréquence fondamentale[1].

Si on appelle « ƒ » la fréquence fondamentale, les partiels harmoniques ont des fréquences égales à : ƒ, 2ƒ, 3ƒ, 4ƒ, 5ƒ, etc.

Exemple :

En prenant comme note fondamentale la3 du piano (440 Hz), les harmoniques ont des fréquences multiples de 440,

  • l'harmonique de rang 1 est la fondamentale, à 440 Hz,
  • l'harmonique de rang 2 est à 440 × 2 = 880 Hz,
  • celle de rang 3 à 440 × 3 = 1 320 Hz, etc.
Les harmoniques d'une corde vibrante

Les partiels harmoniques sont des composants importants d’un son musical – du moins dans une conception traditionnelle du « son musical » : dans les musiques d'aujourd'hui, les bruits peuvent être aussi des sons musicaux. La fondamentale détermine la hauteur perçue, la puissance relative des harmoniques de rang supérieur influe, avec des caractères dynamiques, sur le timbre.

En musique, par assimilation, on appelle « harmoniques » les sons qu'on obtient sur les instruments à cordes en forçant la vibration d'une corde à un mode supérieur à son mode fondamental. Par exemple, en effleurant la corde au tiers de sa longueur, on empêche son déplacement latéral à cet endroit, tout en la laissant osciller autour de ce point fixe, créant un nœud qui l'oblige à vibrer à une fréquence triple de celle qu'elle aurait, libre. Le son ainsi produit se trouve à un intervalle de douzième avec celui de la corde libre (une octave plus une quinte).

Le mot « harmonique » est utilisé aussi de manière moins technique pour désigner des éléments de l'harmonie, par exemple dans l'expression « intervalle harmonique », qui désigne simplement un intervalle appartenant à l'harmonie.