Top Qs
Chronologie
Chat
Contexte

Algorithme LLL

algorithme de réduction de réseau qui s'exécute en temps polynomial De Wikipédia, l'encyclopédie libre

Algorithme LLL
Remove ads

L’algorithme LLL, des initiales de A. Lenstra, H. Lenstra et L. Lovász, est un algorithme de réduction de réseau qui s'exécute en temps polynomial.

Thumb
Exemple d'une réduction de base de réseau, objectif de l'algorithme LLL. les vecteurs noirs sont les vecteurs de base et les rouges sont ceux de la base réduite.

Présentation

L'algorithme LLL procède à une réduction de base de réseau. Il prend en entrée un nombre d de vecteurs de base d'un réseau, tels que ces vecteurs soient de dimension n et de norme inférieure à B, et retourne en sortie une base de réseau LLL-réduite, c'est-à-dire presque orthogonale, en temps .

Remove ads

Pseudo-code

Résumé
Contexte

L'algorithme LLL repose sur l'algorithme de réduction faible de bases, qui permet de rendre une base presque orthogonale.


Entrée : Une base 
Sortie : Une base réduite issue de 
LLL(B):
  B =  ReducFaible(B)

  *On fait Gram-Schmidt*
  Pour i=1 à n :                      
     Pour j= 1 à i-1 :
        
      

  Si B est réduite
    retourne B
  Sinon
    
    echanger(,)
    retourne LLL(B)

Applications

À l'origine, les applications consistaient en la production d'un algorithme de factorisation des polynômes à coefficients rationnels en produits de polynômes irréductibles, ainsi qu'en la résolution des problèmes d'optimisation linéaire avec solutions entières et dimensions fixes. D'autres applications ont été découvertes en cryptographie[1], notamment en cryptographie à clé publique, par exemple avec RSA, les cryptosystèmes basés sur le problème du sac à dos et NTRUEncrypt. En particulier l'algorithme LLL a rendu inefficaces tous les cryptosystèmes utilisant le problème du sac à dos[2]. Il sert également dans le cas des réseaux euclidiens.

Notes et références

Bibliographie

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads