Top Qs
Chronologie
Chat
Contexte

Classification des surfaces

De Wikipédia, l'encyclopédie libre

Classification des surfaces
Remove ads

En mathématiques, et plus précisément en topologie, la classification des surfaces (ou classification des 2-variétés) est un résultat sur les surfaces « closes » (c'est-à-dire compactes et sans bord). Il indique que toute surface close connexe est homéomorphe à l'un des espaces topologiques suivants :

  • une 2-sphère ;
  • une somme connexe de tores, c'est-à-dire une sphère avec anses (la surface est alors orientable, de genre et de caractéristique d'Euler ) ;
  • une somme connexe de plans projectifs réels, c'est-à-dire une sphère avec cross-caps (la surface est alors non orientable, de genre et de caractéristique d'Euler ).
Remove ads

Bibliographie

  • (en) Herbert Edelsbrunner et John Harer, Computational Topology: An Introduction, American Mathematical Soc., (ISBN 978-0-8218-4925-5, lire en ligne), chap. II.1 Two-dimensional Manifolds »), p. 32-38
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads