Top Qs
Chronologie
Chat
Contexte

Graphe de Kneser

De Wikipédia, l'encyclopédie libre

Graphe de Kneser
Remove ads

En théorie des graphes, les graphes de Kneser forment une famille infinie de graphes. Le graphe de Kneser KGn,k est un graphe simple dont les sommets correspondent aux sous-ensembles à k éléments d'un ensemble à n éléments. Deux sommets sont reliés s'ils correspondent à des sous-ensembles disjoints. Son ordre est donc égal , le nombre de combinaison de k parmi n, et il est régulier de degré .

Faits en bref Notation, Nombre de sommets ...
Remove ads

Histoire

En 1955, le mathématicien Martin Kneser se pose la question suivante : « Si on considère la famille des k-sous-ensembles d'un ensemble de cardinal n, on peut partitionner cette famille en n-2k+2 classes de telle façon qu'aucune paire de k-sous-ensembles dans une classe donnée ne soit disjointe. Est-il possible de partitionner la famille considérée en n-2k+1 classes avec la même propriété ? » Kneser conjecture que ce n'est pas possible et le publie sous forme d'un exercice[1].

En 1978 László Lovász étudie la conjecture de Kneser comme un problème de théorie des graphes[2]. Il introduit les graphes de Kneser puis démontre que le nombre chromatique du graphe KGn,k est égal à n-2k+2, ce qui prouve la conjecture de Kneser[3]. L'approche topologique pour résoudre un problème combinatoire est très novatrice et engendre un nouveau domaine : la combinatoire topologique[4].

Remove ads

Propriétés

Résumé
Contexte

Le diamètre d'un graphe de Kneser connexe KGn, k, l'excentricité maximale de ses sommets, est égal à[5] :

Quand , le graphe de Kneser KGn, k est hamiltonien[6]. Il est actuellement conjecturé que tous les graphes de Kneser connexes sont hamiltoniens sauf KG5,2, le graphe de Petersen. Une recherche exhaustive sur ordinateur a révélé que cette conjecture était vraie pour [7],[8].

Quand , le graphe de Kneser est un graphe sans triangle. Plus généralement, bien que le graphe de Kneser contienne toujours un cycle de longueur 4 quand , pour des valeurs de proche de , la longueur du cycle impair le plus court dans le graphe de Kneser est variable[9].

Remove ads

Cas particuliers

Notes et références

Liens externes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads