Top Qs
Chronologie
Chat
Contexte

Radian

unité du SI de mesure d'angle De Wikipédia, l'encyclopédie libre

Radian
Remove ads

Le radian (symbole : rad) est l'unité d'angle (plan ou dièdre) du Système international.

Faits en bref Informations, Système ...
Remove ads

Par définition, un angle ayant son sommet au centre d'un cercle a une mesure d'un radian s'il intercepte, sur la circonférence de ce cercle, un arc d'une longueur égale à celle du rayon du cercle.

Bien que le mot « radian » ait été inventé au cours des années 1870 par Thomas Muir et James Thomson[1],[2], les mathématiciens mesuraient depuis longtemps les angles en prenant pour unité le rapport entre la circonférence et la longueur du rayon.

Remove ads

Définition

Résumé
Contexte

Considérons un secteur angulaire, formé de deux droites concourantes distinctes, et un cercle de rayon r tracé dans un plan contenant ces deux droites, dont le centre est le point d'intersection des droites. Alors, la valeur de l'angle en radians est le rapport entre la longueur L de l'arc de cercle intercepté par les droites et le rayon r.

Thumb
Mesure d'un angle en radian

Un angle d'un radian intercepte sur la circonférence de ce cercle un arc d'une longueur égale au rayon. Un cercle complet représente un angle de 2π radians, appelé angle plein.

L'utilisation des radians est impérative lorsque l'on dérive ou intègre une fonction trigonométrique ou encore lorsque l'on utilise un développement limité de cette fonction trigonométrique : en effet, l'angle pouvant se retrouver en facteur, seule la valeur en radians a un sens. De ce fait, le calcul des fonctions trigonométriques par une série de Taylor suppose l'expression des angles en radians, tout comme l'application de la formule d'Euler, qui l'a posée en spécifiant que les angles devaient être mesurés par la longueur en rayons de l'arc qu'ils interceptent, plus d'un siècle avant l'invention du terme radian.

Remove ads

Petits angles

Pour les petits angles exprimés en radians, sin x ≈ tan xx.

  • Pour un angle de valeur inférieure à 0,17 radian (soit ~10°), l'erreur est de moins de 1 % ;
  • Pour un angle de valeur inférieure à 0,05 radian (soit ~3°), l'erreur est de moins de 0,1 %[3].

Dans le domaine de la topographie, où on traite d'angles faibles, on utilise le mil angulaire, une unité pratique, définie comme l'angle qu'intercepte une longueur de mm à une distance de m. Elle sert, par exemple, à déterminer la distance d'une mire de hauteur connue par la mesure de sa taille apparente. Dans les conditions où elle sert, cette unité s'identifie avec un milliradian.

Remove ads

Relations entre grades, degrés et radians

Résumé
Contexte
Thumb
Diagramme pour la conversion entre degrés et radians.

Un tour complet équivaut à 2π radians, 360 degrés, 400 grades.

Par conséquent,

  • Un radian vaut environ 57,3° ou 57° 18' (360°÷2π) ;
  • un degré vaut approximativement 17,5 milliradians.

Les formules de conversion entre les degrés et les radians sont :

.
.

Les formules de conversion entre les grades et les radians sont :

.
.
Davantage d’informations nom de l'angle, valeur en radians (rad) ...
Remove ads

Éponymie

L'astéroïde (206265) Radian porte le nom de l'unité. À l'arrondi à l'unité près, 206265 est le nombre de secondes d'arc dans un radian et, par conséquent, également le nombre d'unités astronomiques dans un parsec (valeur exacte : 648 000/π)[4].

Voir aussi

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads