Top Qs
Chronologie
Chat
Contexte

Sous-groupe de Hall

De Wikipédia, l'encyclopédie libre

Sous-groupe de Hall
Remove ads

En théorie des groupes (une branche des mathématiques), les sous-groupes de Hall d'un groupe fini sont les sous-groupes dont l'ordre et l'indice sont premiers entre eux. Ils portent le nom du mathématicien Philip Hall.

Thumb
portrait de Philip Hall

Définition

Soit un groupe fini. Un sous-groupe de est appelé un sous-groupe de Hall de si son ordre est premier avec son indice dans . Autrement dit, un sous-groupe de est dit sous-groupe de Hall si est premier avec . Cela revient encore à dire que pour tout diviseur premier p de , la puissance à laquelle p figure dans est la même que celle à laquelle il figure dans .

Remove ads

Propriétés

  • Si est un sous-groupe de Hall normal de alors il est seul de son ordre parmi les sous-groupes de et est donc caractéristique dans [1].
  • Le fait ci-dessus a par exemple pour conséquence importante que le complément normal dont le théorème du complément normal de Burnside assure l'existence est non seulement normal mais caractéristique.
  • P. Hall a prouvé[2] que pour tout groupe fini  :
    • si est résoluble alors, pour tous et premiers entre eux tels que [3],[4],[5] :
      1. il existe au moins un sous-groupe d'ordre ,
      2. les sous-groupes d'ordre sont conjugués deux à deux,
      3. tout sous-groupe dont l'ordre divise est inclus dans l'un d'entre eux ;
    • une réciproque forte du point 1[6],[7] : pour que soit résoluble, il suffit qu'il possède un sous-groupe d'indice pour chaque valeur de , où désigne la décomposition en facteurs premiers de .
Remove ads

Exemple

Parmi les diviseurs d de |G| tels que d soit premier avec |G|/d figurent en particulier les d = pn, où p est un nombre premier et n l'entier maximum tel que pn divise |G|. Les sous-groupes de Hall correspondants sont exactement les p-sous-groupes de Sylow de G. Hall étend donc à tous les diviseurs d de |G| tels que d soit premier avec |G|/d le théorème classique sur l'existence des p-sous-groupes de Sylow d'un groupe fini, mais seulement sous l'hypothèse supplémentaire que G est résoluble.

Notes et références

Voir aussi

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads