Teorema do número primo

From Wikipedia, the free encyclopedia

Remove ads

En teoría de números o teorema do número primo é un enunciado que describe a distribución asintótica dos números primos. Este teorema achega unha descrición xeral de como están distribuídos os números primos no conxunto dos números naturais. Isto formaliza a idea intuitiva de que os primos son menos comúns canto máis grandes son. É un dos teoremas máis importantes da historia das matemáticas, non só pola súa beleza senón pola súa influencia no desenvolvemento posterior da investigación dos números primos.[1]

Remove ads

Expresión do teorema

Thumb
Gráfico comparativo de π(x) (vermello), x / ln x (verde) e Li(x) (azul).

Sexa a función de contaxe de números primos, que denota a cantidade de primos que non exceden a . O teorema establece que:[2]

, onde é o logaritmo natural de .

Esta expresión non implica que a diferenza das dúas partes da mesma para valores de moi grandes sexa cero; só implica que o cociente destas para valores de moi grandes é case igual a 1.

Unha mellor aproximación que a anterior vén dada pola integral logarítmica desprazada:

, onde é a integral logarítmica desprazada de .
Remove ads

Historia

En 1792 ou 1793,[3] estando aínda no Collegium Carolinum, e sempre segundo o propio Gauss («ins Jahr 1792 oder 1793»),[4] este anotou no seu caderno de notas:

«Números primos menores que a (= ∞) a/la» que na linguaxe moderna quere dicir que π(a) para valores cada vez maiores se achega ao cociente a/lna) e considérase como "a primeira conxectura do teorema dos números primos". Ademais a función π(x) que indica a cantidade de números primos que non superan x foi definida por Gauss.

O teorema dos números primos tamén foi conxecturado por Adrien-Marie Legendre en 1798, indicando que π(x) parecía ter a forma a/(A ln(a) + B), onde A e B son constantes non especificadas. Na segunda edición do seu libro de teoría de números (1808) fixo unha conxectura máis precisa, indicando que A = 1 e B = −1.08366.[5] a conxectura foi posteriormente refinada por Gauss coa expresión que se asocia máis frecuentemente ao teorema. Prestaron contribucións significativas sobre esta proposición Legendre, Gauss, Dirichlet, Chebyshev e Riemann.[5]

A demostración formal do teorema fixérona de forma independente tanto Jacques Hadamard como Charles-Jean da Vallée Poussin no ano 1896. Ambas as demostracións baseábanse no resultado de que a función zeta de Riemann non ten ceros da forma 1 + it con t > 0. En realidade a demostración fíxose sobre unha expresión algo máis estrita do que se indica na definición anterior do teorema, sendo a expresión demostrada por Hadamard e Poussin a seguinte:

onde

.

Dende 1896 a expresión asociada ao teorema dos números primos foi mellorada sucesivamente, sendo a mellor aproximación actual a dada por:


onde defínese como a función asintótica a e é unha constante indeterminada.

Para valores de pequenos demostrárase que , o que levou a conxecturar a varios matemáticos da época de Gauss que era unha cota superior estrita de (isto é que a ecuación non ten solucións reais). Non obstante, en 1912 J. E. Littlewood demostrou que esa cota é cruzada para valores de suficientemente grandes. O primeiro deles coñécese como primeiro número de Skewes, e sábese que é inferior a , aínda que se pensa que pode ser inferior incluso a . En 1914 Littlewood ampliou a súa demostración coa inclusión de múltiples solucións á ecuación . Moitos destes valores e descubrimentos están asociados á validez da hipótese de Riemann.

Remove ads

Relación coa hipótese de Riemann

Dada a conexión que hai entre a función zeta de Riemann ζ(s) e π(x), a hipótese de Riemann é moi importante na teoría de números, e por suposto, no teorema dos números primos.

Se a hipótese de Riemann se cumpre, entón o termo erro que aparece no teorema dos números primos pode limitarse do mellor xeito posible. Concretamente, Helge von Koch demostrou en 1901 que

se e só se a hipótese de Riemann se cumpre.

Unha variante refinada do resultado de Koch, dada por Lowel Schoenfeld en 1976, afirma que a hipótese de Riemann é equivalente ao resultado:

Aproximacións para o n-ésimo número primo

Como consecuencia do teorema dos números primos, obtense unha expresión asintótica para o n-ésimo número primo, denotado por pn:

Unha aproximación mellor é:

[6]
Remove ads

Teorema dos números primos para progresións aritméticas

Sexa a función que denota o número de primos nunha progresión aritmética a, a + n, a + 2n, a + 3n, … menor que x. Dirichlet e Legendre conxecturaron, e Vallée-Poussin demostrou, que, se a e n son coprimos, entón

onde φ(•) é a función totiente de Euler. Noutras palabras, os números primos distribúense uniformemente entre os residuos de clases [a] módulo n con mcd(a, n) = 1. Isto pode demostrarse empregando métodos similares utilizados por Newman na súa demostración do teorema dos números primos.[7]

O teorema de Siegel–Walfisz dá unha boa estimación da distribución dos números primos nos residuos de clases.

Remove ads

Notas

Véxase tamén

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads