שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה

התפלגות t

מוויקיפדיה, האנציקלופדיה החופשית

התפלגות t
Remove ads

בתורת ההסתברות, התפלגות t של סטודנט (Student's t-distribution), או בפשטות התפלגות t, היא משפחה של התפלגויות רציפות שמהווה הכללה של ההתפלגות הנורמלית. כמו ההתפלגות הנורמלית, התפלגות t היא סימטרית סביב אפס, ובעלת צורה דמוית פעמון, אך יש לה זנב עבה. מסת ההסתברות בזנבות נשלט על ידי הפרמטר . כאשר התפלגות t ההיא התפלגות קושי, שהזנבות שלה "עבים". עבור ההתפלגות שואפת להתפלגות הנורמלית שהזנבות שלה "דקים" מאוד.

עובדות מהירות פונקציית ההסתברות המצטברת, מאפיינים ...

ההתפלגות מתארת את הערכים הצפויים למדגם מתוך אוכלוסייה המתפלגת נורמלית, כאשר השונות של האוכלוסייה אינה ידועה. התפלגות t היא הבסיס למבחן t, המשמש לבדיקת מובהקות ההפרש בין הממוצעים של שני מדגמים של אוכלוסייה וכן לניתוח רגרסיה ליניארית.

Remove ads

היסטוריה

בסטטיסטיקה, התפלגות t נגזרה לראשונה כהסתברות פוסטריורית ב-1876 על ידי המתמטיקאים הגרמנים הלמרט(אנ') ולורות'(אנ').[2][3]

בספרות האנגלית, ההתפלגות קיבלה שמה מהמאמר של ויליאם גוסט(אנ') מ-1908 בכתב העת Biometrika (אנ') תחת השם הבדוי "סטודנט".[4] גוסט עבד באותו זמן ככימאי במבשלת הבירה של גינס בדבלין, אירלנד והתעניין בבעיות של דגימות קטנות. למשל, התכונות הכימיות של שעורה בדגימות שגודלן קטן. המאמר של גוסט מתייחס להתפלגות כ"התפלגות התדירות של סטיות תקן של דגימות שנלקחו מאוכלוסייה נורמלית". העבודה התפרסמה בזכות עבודתו של רונלד פישר, שכינה את ההתפלגות "התפלגות סטודנט" וייצג את ערך המבחן באות t.[5][6]

אחת הגרסאות לשימוש בשם הבדוי בפרסום המאמר היא שהמעסיק של גוסט, העדיף שהצוות ישתמש בשמות עט בפרסום מאמרים מדעיים במקום בשמם האמיתי ולכן גוסט בשם הבדוי "סטודנט". גרסה אחרת היא שגינס לא רצו שהמתחרים שלהם ידעו שהם משתמשים במבחן t כדי לקבוע את איכות חומר הגלם.[7]

Remove ads

הגדרה

סכם
פרספקטיבה

פונקציית הצפיפות

פונקציית צפיפות ההסתברות של התפלגות t היא:

כאשר הוא מספר דרגות החופש ו- היא פונקציית גמא.

אלטרנטיבית ניתן לכתוב

כאשר היא פונקציית בטא. בפרט כאשר הוא מספר שלם מתקבל:

כאשר וזוגי,

כאשר ואי-זוגי,

פונקציית צפיפות ההסתברות היא סימטרית, וצורתה הכללית דומה לצורת הפעמון של משתנה מתפלג נורמלית עם ממוצע 0 ושונות 1, אלא שהיא מעט נמוכה ורחבה יותר. ככל שגדל מספר דרגות החופש, התפלגות t מתקרבת להתפלגות נורמלית עם ממוצע 0 ושונות 1. מסיבה זו ידוע גם בתור פרמטר הנורמליות.

האיורים הבאים מציגים את פונקציית הצפיפות של התפלגות t עבור ערכי הולכים וגדלים. ההתפלגות הנורמלית מוצגת כקו כחול להשוואה. שימו לב שהתפלגות t (קו אדום) מתקרבת להתפלגות הנורמלית כאשר עולה.

פונקציית הצפיפות של התפלגות t (אדום) עבור דרגות חופש, יחד עם צפיפות ההתפלגות הנורמלית הסטנדרטית (כחול). הגרפים הקודמים מופיעים בירוק.
Thumb
Thumb
Thumb
Thumb
Thumb
Thumb

פונקציית הצפיפות המצטברת

ניתן לכתוב את פונקציית הצפיפות המצטברת בעזרת , פונקציית בטא הלא שלמה הרגולרית. עבור

כאשר

ביטוי אחר שתקף למקרה :

כאשר הוא מקרה פרטי של הפונקציה ההיפרגאומטרית.

Remove ads

מומנטים

סכם
פרספקטיבה

עבור המומנטים של התפלגות t הם

מומנטים מסדראו מסדר גבוה יותר אינם קיימים.[8]

עבור k זוגי ניתן לפשט את האיבר ל באמצעות התכונות של פונקציית גמא

תוחלת, שונות, צידוד, גבנוניות

עבור התפלגות t עםדרגות חופש:

  • התוחלת היא עבור .
  • השונות היא עבור אחרת השונות אינה מוגדרת.
  • הצידוד הוא 0 עבור , אחרת הצידוד אינו מוגדר.
  • הגבנוניות היא עבור , עבור , אחרת הגבנוניות אינה מוגדרת.
Remove ads

כיצד נוצרת התפלגות t

התפלגות של משתנה מקרי

ניתן להגדיר את התפלגות t עםדרגות חופש באמצעות משתנה מקרי T

כאשר Z הוא משתנה מקרי מתפלג נורמלית עם תוחלת אפס ושונות 1, V משתנה מקרית עם התפלגות כי בריבוע עםדרגות חופש ו-Z ו-V הם בלתי תלויים.

דגימה של התפלגות t

התפלגות t עשויה להתקבל באמצעות דגימה של משתנה מקרי נורמלי. יהיו דגימות בלתי תלויות ושוות התפלגות מתוך התפלגות נורמלית עם תוחלת ושונות . ממוצע המדגם ואומד חסר הטיה לשונות נתונים על ידי

הסטטיסטי יהיה בעל התפלגות t עם דרגות חופש.

Remove ads

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא התפלגות t בוויקישיתוף
  • התפלגות t, באתר MathWorld (באנגלית)

הערות שוליים

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads