שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה
טרנספורמציות לורנץ
העתקות ליניאריות בין מערכות ייחוס המראות כיצד משתנים הזמן והמרחב כאשר עוברים ממערכת ייחוס אחת לאחרת מוויקיפדיה, האנציקלופדיה החופשית
Remove ads
טרנספורמציות לורנץ, העתקות לורנץ או התמרות לורנץ[1] הן העתקות ליניאריות בין מערכות ייחוס המראות כיצד משתנים הזמן והמרחב כאשר עוברים ממערכת ייחוס אחת למערכת ייחוס אינרציאלית הנעה יחסית אליה במהירות קבועה בקו ישר. את טרנספורמציית לורנץ אפשר להסיק מעקרונות היסוד (הפוסטולטים) של תורת היחסות הפרטית, ואכן – טרנספורמציות לורנץ הן כלי מרכזי בביצוע חישובים במסגרת תורה זו.
טרנספורמציית לורנץ פותחה עוד במאה ה-19 בנפרד מתורת היחסות הפרטית על ידי הפיזיקאי ההולנדי הנדריק לורנץ כדי לפתור סתירות שנתגלו בין האלקטרומגנטיות למכניקה הקלאסית. אחת הבעיות הייתה כוח לורנץ המגנטי.
Remove ads
מבוא ודוגמאות
סכם
פרספקטיבה
נניח שמערכת ייחוס (צירים + שעון) S נמצאת במנוחה ברגע בראשית הצירים, כלומר . נניח שמערכת 'S שנמצאת באותו מקום נעה ביחס אליה במהירות (קבועה) בכיוון .
במכניקה הקלאסית, כדי לחשב כיצד משתנות המדידות של מקום וזמן במערכת 'S לעומת מדידות אלה במערכת S משתמשים בטרנספורמציית גליליי:
עם זאת, כאשר v היא מהירות שאינה זניחה יחסית למהירות האור מסתבר שטרנספורמציית גליליי, המתארת כיצד לתרגם מקום וזמן בין שתי המערכות, איננה נותנת תוצאות מדויקות. ההעתקה המתאימה לתרגום ניתנת במסגרת תורת היחסות הפרטית ובניגוד לטרנספורמציית גליליי היא מערבבת בין המרחב והזמן. להעתקה זו קוראים טרנספורמציית לורנץ או טרנספורמציית לורנץ boost (כאשר boost מרמז כי היא קשורה למהירות) והיא נראית כך:
כאשר:
הוא פקטור לורנץ ו-c היא מהירות האור בריק.
אם מסמנים וכן מתעלמים מצירי y ו-z שלא משתנים, ניתן לבטא את ההעתקה על ידי הייצוג המטריציוני הבא:
כאשר הכפל כאן הוא כפל מטריצות רגיל.
Remove ads
הגדרה פורמלית
סכם
פרספקטיבה
מרחב מינקובסקי והמטריקה
נגדיר את המטריצה של מרחב מינקובסקי שטוח:
בכתיב טנזורי, כותבים את כ־. במרחב מינקובסקי הזמן איננו סקלר אלא חלק מ 4-וקטור:
נשים לב ש (כאשר אינדקס מופיע פעם למעלה ופעם למטה, הסכם הסכימה של איינשטיין, קובע שמסכמים על הערכים האפשריים 0,1,2,3) שימו לב שזהו לא שוויון מטריציוני ולא מתבצע כפל מטריצות אלא זה שוויון של סכום של איברים. וזהו בעצם חוק שמירות האינטרוול ואינווריאנטיות הזמן העצמי.
חבורת לורנץ
חבורת לורנץ היא החבורה האורתוגונלית של התבנית , כלומר, אוסף המטריצות ההפיכות מסדר 4 על 4, המקיימות , כאשר מסמן את המטריצה המשוחלפת. אלו הן בדיוק ההעתקות הליניאריות של המרחב-זמן השומרות על המטריקה של מינקובסקי.
Remove ads
סיווג טרנספורמציות לורנץ
סכם
פרספקטיבה
סיבובים מרחביים
כל העתקה מהצורה:
כאשר U היא מטריצת סיבוב אורתוגונלית (כלומר: ) היא טרנספורמציית לורנץ. למעשה, זוהי העתקת סיבוב מרחבית. המשמעות של זה היא שכל חוקי הפיזיקה יישארו אינווריאנטים גם אם נסובב את מערכת הצירים סביב הראשית, כלומר: לטבע אין כיוון מועדף (איזוטרופיה).
boost
זוהי העתקה המעבירה ממערכת ייחוס אחת למערכת ייחוס הנעה ביחס אליה במהירות קבועה.
בלי הגבלת הכלליות, נניח שמערכת ייחוס 'S נעה במהירות יחסית v בכיוון x למערכת ייחוס S. אזי כלל התרגום בין 4-וקטור האירוע ב S לבין וקטור האירוע ב 'S הוא
כאשר הוא פקטור לורנץ ו-c היא מהירות האור בריק.
את 4 משוואות הטרנספורמציה אפשר לייצג באמצעות מטריצה:
או באופן שקול כך:
כאשר מערכת 'S נעה ביחס ל S בכיוון כלשהו, טרנספורמציית לורנץ הכללית תינתן על ידי הרכבה של 2 סיבובים ו-boost. נסובב את שתי המערכות כך שציר x שלהן יהיה באותו כיוון ומקביל לכיוון המהירות היחסית ביניהן, נבצע את ה-boost ואז נסובב בחזרה לקואורדינטות המקוריות. הביטוי הכללי מכוער למדי ואין טעם לרשמו.
חיבור מהירויות יחסותי
כמו כן, מטרנספורמציית לורנץ ה-boost אפשר להסיק כלל של חיבור מהירויות באותו כיוון (על ידי הרכבה של boost על boost) ולקבל ש
Remove ads
שדות אלקטרומגנטיים תחת טרנספורמציית לורנץ
סכם
פרספקטיבה
זוהי העתקה המעבירה את השדה החשמלי ואת השדה המגנטי ממערכת ייחוס אחת למערכת ייחוס הנעה ביחס אליה במהירות קבועה, :
- הוא השדה החשמלי במערכת הנעה.
- הוא השדה החשמלי במערכת הייחוס.
- הוא השדה המגנטי במערכת הנעה.
- הוא השדה המגנטי במערכת הייחוס.
הלכה למעשה, את ההעתקות לעיל ניתן להציג כהעתקות על רכיבי השדות המקבילים לווקטור המהירות , נסמנם ב- ו-, ועל רכיבי השדות המאונכים לו, נסמנם ב- ו-. אם כן, נקבל את ההעתקות הבאות עבור הרכיבים המאונכים:
ועבור הרכיבים המקבילים:
כלומר, הרכיבים המקבילים למהירות עוברים ללא שינוי בטרנספורמציית לורנץ.
Remove ads
ראו גם
קישורים חיצוניים
- קליפ אנימציה המדגים את טרנספורמציית לורנץ
- גזירת הביטויים עבור טרנספורמציות לורנץ, בבלוג "רשימות בפיזיקה עיונית"
- טרנספורמציות לורנץ, באתר MathWorld (באנגלית)
- ההיסטוריה והנוסחה של לורנץ, באתר "דעמדע"
- טרנספורמציות לורנץ, באתר אנציקלופדיה בריטניקה (באנגלית)
טרנספורמציות לורנץ, דף שער בספרייה הלאומית
הערות שוליים
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads