שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה

שדה סגור אלגברית

מוויקיפדיה, האנציקלופדיה החופשית

Remove ads

במתמטיקה, שדה הוא סגור אלגברית אם לכל פולינום לא קבוע עם מקדמים מ- קיים שורש ב-.

דוגמאות

  • שדה המספרים הממשיים הוא לא סגור אלגברית. הפולינום , למשל, הוא פולינום עם מקדמים ממשיים (0 ו-1) שלא קיים לו שום שורש ממשי - לא קיים מספר ממשי כך ש-. בצורה דומה ניתן לראות שכל תת-שדה של שדה המספרים הממשיים (ובפרט, למשל, שדה המספרים הרציונליים) הוא אינו סגור אלגברית.
  • כל שדה סופי הוא לא סגור אלגברית. אם הם איברי השדה , אז הפולינום הוא פולינום שמקדמיו מ- אבל לא קיים לו שורש ב-.
  • בניגוד לדוגמאות הקודמות, לפי המשפט היסודי של האלגברה, שדה המספרים המרוכבים הוא סגור אלגברית (למשל, לפולינום קיים שורש מרוכב).
  • דוגמה נוספת לשדה סגור אלגברית הוא שדה המספרים האלגבריים, שהוא הסגור האלגברי של שדה המספרים הרציונליים.
  • הסגור האלגברי של שדה סופי ממאפיין הוא האיחוד של כל השדות הסופיים מאותו מאפיין. לשדה המתקבל קוראים לפעמים .
Remove ads

הגדרות שקולות

שדה הוא סגור אלגברית אם ורק אם הוא מקיים את אחת התכונות השקולות הבאות:

Remove ads

חשיבות גאומטרית

בגאומטריה אלגברית, כאשר חוקרים מערכות משוואות מנקודת מבט גאומטרית, עובדים תמיד מעל שדה סגור אלגברית; גישה זו מסירה את ההפרעות האריתמטיות (שנובעות מאי-קיום שורשים לפולינומים או למערכות של פולינומים), ומותירה רק את האופי הגאומטרי שלהם. לדוגמה, כאשר עוסקים במספרים רציונליים, הקו הישר אינו נחתך עם המעגל (משום שנקודות החיתוך אינן רציונליות). שתי נקודות החיתוך מופיעות כאשר עוברים לסגור האלגברי.

סגור אלגברי

לכל שדה ישנו שדה הרחבה סגור אלגברית. מבין כל שדות ההרחבה הסגורים אלגברית, קיים ויחיד (עד כדי איזומורפיזם, שאיננו יחיד), שהוא הרחבה אלגברית של , והוא נקרא הסגור האלגברי של .

הכללות

סגירות אלגברית נחקרה גם בהקשר של חוגים עם חילוק שאינם שדות, אבל הדוגמאות ספורדיות ואינן עולות לכדי תאוריה אחידה ().

קישורים חיצוניים

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads