שאלות נפוצות
ציר זמן
צ'אט
פרספקטיבה

NcRNA

מולקולת רנ"א שאינה מקודדת לחלבון מוויקיפדיה, האנציקלופדיה החופשית

Remove ads

ncRNA (ראשי תיבות באנגלית של non-coding RNA, בעברית: רנ"א לֹא מְקוֹדָד) היא מולקולת רנ"א שאינה מקודדת לחלבון. מולקולות אלו נפוצות בתא ולחלקן פעילות ביולוגית חשובה, כגון tRNA או רנ"א מוביל, rRNA או רנ"א ריבוזומלי, siRNA, microRNA ו- long ncRNA, המעורבים בתהליכי התרגום, עריכת הרנ"א, השחבור, הבקרה על ביטוי הגנים, הגנה על הגנום ועוד.

בעוד שרוב הגנום של אאוקריוטים עובר שעתוק, רק אחוזים נמוכים שלו מתורגמים לחלבון[1]. לאחר שהתברר על ידי פרויקט גנום האדם כי רק כ-2% מהגנום מייצג מידע המקודד לכ-20,000 חלבונים[2] הועלתה הסברה כי המורכבות ההתפתחותית והפיזיולוגית של האדם טמונה לא רק במודיפיקציות כמו שחבור חליפי, אלא בעיקר ביתרת המידע הנמצא בגנום. בשנת 2005 התגלה כי רוב הגנום ביונקים אכן עובר שעתוק ליצירת תעתיקים שאינם מקודדים לחלבון (ncRNA) וחלקם אף בעלי פעילות המבקרת את יצירת התעתיקים המקודדים לחלבון[3].

מספר הגנים המקודדים ל־ncRNA אינו ידוע, אך מחקרים ומאגרים ביואינפורמטיים עדכניים מראים כי קיימות לפחות כחצי מיליון מולקולות ncRNA בגנום האנושי[4], אך עדיין לא ברור לכמה מהן קיימת פעילות ביולוגית.

Remove ads

היסטוריה

סכם
פרספקטיבה

המחקר העוסק ב-RNA התפתח משנות ה-50 ואילך והוביל לתגליות ביולוגיות רבות, שהעניקו למגליהן מספר רב של פרסי נובל במרוצת השנים.

המחקר החל בגילוי חומצות הגרעין על ידי פרידריך מישר בשנת 1868[5]. פישר גילה כי בנוזל התא בתאי דם לבנים קיים חומר נוסף פרט לחלבון, ולאחר שהפריד את גרעין התא וניתח אותו מבחינה כימית גילה כי החומר הכימי שנמצא בתוך הגרעין הוא חומצות הגרעין וכי הן נפוצות בכלל התאים. למרות מחקריו בנושא הוא ורוב המדענים בתקופתו סברו כי החלבונים הם החומר האחראי להעברת המידע התורשתי לדור הבא.

במאמר משנת 1944 אוסוולד אייברי הציע לראשונה כי ייתכן שה-DNA הוא האחראי להעברת המידע התורשתי, ובניסויים שנעשו על ידי אלפרד הרשי ומרתה צ'ייס (ראו ניסוי הרשי-צ'ייס) ב-1952 אושש כי אכן ה-DNA מהווה החומר התורשתי, שכן החדרתו לתא שינתה את תכונות התא. פריצת הדרך התרחשה בשנת 1951, כאשר פרנסיס קריק וג'יימס ווטסון פענחו את מבנה הסליל הכפול של הדנ"א בעזרת תמונת קריסטלוגרפיה בקרני רנטגן שלקחו מרוזלינד פרנקלין ללא ידיעתה[6][7].

בשנת 1955 ג'ורג' פאלאדה גילה את הריבוזום תוך שימוש במיקרוסקופ אלקטרונים[8]. בהמשך התגלה כי תת-היחידות המרכיבות אותו, (Ribonucleoprotein (RNP, מהוות קומפלקס של חלבון ו-ncRNA הקשורים יחד.

ב-1958 פרנסיס קריק הציג לראשונה את 'הדוגמה המרכזית של הביולוגיה המולקולרית' לפיה החומר התורשתי משועתק מדנ"א לרנ"א ולאחר מכן מתורגם לחלבון[9]. דוֹגמה זו הציעה כי מולקולת RNA מסוג mRNA משמשת מתווך להעברת המידע התורשתי כדי ליצור חלבון. לאחר כשנתיים, בשנת 1960, שני חוקרים, סם וייס וג'ררד הורביץ, גילו בנפרד את האנזים RNA פולימראז המבצע את תהליך השעתוק מ-DNA ל-RNA בכל היצורים החיים[10].

עם גילוי מולקולת ה-ncRNA הראשונה החלה להתברר חשיבותן ושכיחותן בתא של מולקולות ncRNA על מגוון תפקידיהן.

בשנת 1965 תיאר רוברט הולי את המבנה המרחבי של מולקולת tRNA של חומצת האמינו אלנין משמר האפייה וקישר בין הדנ"א ליצירת חלבון[11]. בשנת 1967 גילו סידני אלטמן ותומאס צ'אק את הריבוזים ותיארו לראשונה פעילות קטליטית של מולקולת RNA בדומה לאנזימים ובניגוד לדוגמה המרכזית של הביולוגיה המולקולרית[12]. עוד באותה שנה הציג קארל ווס את השערת עולם ה-RNA, המציעה כי צורות החיים הקדומות ביותר היו בנויות ממולקולות RNA שמילאו הן את תפקיד החומר התורשתי המגולם היום על ידי ה-DNA והן את תפקיד האנזימים המגולם היום על ידי החלבונים. השערה זו נסמכת על הגילויים כי מולקולת RNA מסוגלת לאחסן, להעביר ולשכפל מידע גנטי ולבצע פעילות קטליטית[13].

בשנת 1982 מולקולות (small nuclear RNA (snRNA התגלו בגרעין התא, ונמצא שתפקידן העיקרי קשור בעריכת מולקולות mRNA ו־rRNA ראשוניות[14]. בשנת 1984 אליזבת בלקברן וקרול גריידר תיארו לראשונה פעילות מבנית של מולקולת ncRNA כאשר גילו את הטלומראז. אנזים זה מאריך את אזור הקצה של הכרומוזום, הטלומר באיקריוטים, על ידי שימוש במולקולת ncRNA כתבנית לפעילות של רוורס טרנסקריפטאז[15]. בשנת 1993 ויקטור אמברוס, לי רוזלינד ורונדה פיינבאום גילו את מולקולת ה-microRNA הראשונה lin-14 ותיארו את מנגנון פעולתה[16]. בשנת 1998 תיארו אנדרו פייר וקרייג מלו את מכניזם הפעולה של מולקולת RNAi השמור בכל היצורים האאוקריוטים, הגורמת לפירוק מולקולת mRNA ומניעת תרגומה לחלבון[17][18].

Remove ads

סוגי ncRNA

ישנן מספר קבוצות של מולקולות ncRNA שלהן תפקידי מפתח בתהליכים שונים בתא, חלקן מראות שמירות אבולוציונית ברוב המינים השונים, וחלקן ספציפיות למינים ייחודיים.

רשימת מולקולות ncRNA עיקריות:

חומצת גרעין לא מקודדתשם מלא באנגליתשם מלא בעבריתגודלכמות באדםתפקיד
miRNAmicro RNAמיקרו רנ"א19-24 בסיסים1424<בקרת התבטאות גנים
piRNAPiwi-interacting RNApiRNA26-31 בסיסים23,439בקרה על טרנספוזונים, מתילציית DNA
tRNAtransfer RNAרנ"א מעביר74-93 בסיסים20,848נשיאת חומצת אמינו וקישור לריבוזום לפי התאמה לקודון
snRNASmall nuclear RNARNA גרעיני קטן~150 בסיסיםעריכת rRNA
snoRNASmall nucleolar RNARNA גרעינוני קטן60-300 בסיסים300<עריכת rRNA
lincRNALong intergenic non-coding RNAslincRNA200< בסיסים1000<בקרת התבטאות גנים
rRNAribosomal RNAרנ"א ריבוזומלי1500-4700 בסיסיםכ-80% מכמות הגנים המבוטאיםפעילות קטליטית בריבוזום של יצירת קשר פפטידי בין חומצות אמינו
lncRNALong non coding RNAslncRNA200< בסיסים3000<בקרת התבטאות גנים, השתקה של כרומוזום X, בקרת תרגום, בקרת דחיסות כרומטין
Remove ads

תפקיד מולקולות ncRNA

סכם
פרספקטיבה

תרגום

Thumb
מבנה תלת־ממדי של מולקולת tRNA שמרית הנושאת חומצת אמינו פנילאלנין
Thumb
המבנה האטומי של תת-היחידה 50S בריבוזום. החלבונים מוצגים בכחול ושני מקטעי הרנ"א בכתום וצהוב.[19] במרכז בירוק מצוין האתר הפעיל.

רוב מולקולות ה-ncRNA השמורות אבולוציונית משתתפות בתהליך התרגום, וכ-80% ממסת הרנ"א המצויה בתא מהווה rRNA.

הריבוזומים המשמשים בתהליך התרגום בתא כ'מפעל הייצור של החלבונים' מורכבים מ (Ribonucleoprotein (RNP המהווים קומפלקס של חלבון נוקלאופרוטאין ורנ"א ריבוזומלי הקשורים יחד. הריבוזום מכיל כ-65% rRNA (רנ"א ריבוזומלי), כאשר באאוקריוטים הריבוזום עשוי מארבע מולקולות ncRNA, בעוד שבפרוקריוטים הריבוזום עשוי משלוש מולקולות ncRNA בלבד. תפקיד ה-rRNA הוא לזרז את תגובת הוספת חומצת אמינו למולקולת חלבון חדשה, ובכך לתרגם את המידע המצוי ברצף הקודון להוספת חומצת אמינו ברצף החלבון.

משפחה נוספת של ncRNA הלוקחת חלק בתהליך התרגום היא משפחת ה־tRNA הנושאות חומצות אמינו ומשמשות כמתווך בין מולקולת ה-mRNA לבין הריבוזום. במידה ומולקולת ה-tRNA בעלת חומצת אמינו המתאימה לקודון (על-פי הקוד הגנטי) היא תיקשר אל הריבוזום, כך שחומצת האמינו תצורף לשרשרת הנבנית של החלבון.

בפרוקריוטים קיימת מולקולת tmRNA בעלת תכונות משולבות של mRNA ו-tRNA, נקשרת לריבוזום הפרוקריוטי שנתקעו בתהליך התרגום בשל תרגום mRNA שאיבד את קודון הסיום שלו. tmRNA נכנסת לאתר A הפנוי, הריבוזום קושר אליה את השרשרת הפוליפפטידית שנוצרה. לאחר מכן התרגום ממשיך על בסיס התבנית שעל גבי ה-tmRNA שיוצר סימון לפירוק התעתיק הלא תקין[20][21].

שחבור

באיקריוטים הספלייסוזום הוא קומפלקס גרעיני הקושר מולקולות mRNA ראשוניות ומבצע עריכה להסרת מקטעי האינטרונים שאינם מקודדים לחלבון כדי לייצר מולקולת mRNA בוגרת שתוכל לצאת לציטופלזמה ולעבור תרגום.

הספלייסוזום מורכב מ-5 תת-יחידות של RNP הנקראות small nuclear ribonucleic particles (snRNP), המכילים חלבונים ו-snRNA.

ישנן שתי צורות שבהן מופיע קומפלקס הספלייסוזום, הספלייסוזום העיקרי (major spliceosome) והספלייסוזום המשני (minor splicosome). הספלייסוזום העיקרי מורכב מתת-יחידות U1, U2, U4, U5 ו-U6, ואילו הספלייסוזום המשני מורכב מתת-היחידות U11, U12, U4atac, U6atac ו-U5.

snoRNA הן מולקולות הנמצאות בגרעינון ומשתתפות בתהליכים הקשורים בעיבוד ושינוי rRNA כך שיתאים ליצירת הריבוזום, וכן מבקרות את תהליך השחבור החליפי[22].

ישנה קבוצת גנים המכילים אינטרונים המסוגלת לבצע חיתוך עצמי של מקטעי האינטרונים המהוות ריבוזים (כלומר, בעלות פעילות קטליטית בדומה לאנזימים). קיימות שתי קבוצות עיקריות Group I introns, Group II intron, כאשר בשתיהן קיפולן המרחבי מאפשר למקטעי האינטרונים לזרז את חיתוכם העצמי מתעתיקי הרנ"א הראשוניים במגוון רחב של יצורים[23][24].

Thumb
תרשים פעילות החיתוך של רנ"א על ידי הריבוזים.[25].

מודיפיקציות

קיימות מעל 100 מודיפיקציות שונות המתבצעות על RNA ו-DNA, כאשר רובן המכריע מתווך על ידי RNA המגדיר לאנזים בעזרת זיווג בסיסים בין ה-RNA ל-DNA – היכן יש לבצע את המודיפיקציה.

scaRNA הן מולקולות המשמשות לעיבודן של מולקולות snRNA ו-snoRNA.

RNAse P הוא ריבוזים שאחראי על חיתוך קצה 5' של precursor-tRNA ומוביל ליצירת tRNA בוגר[26].

עריכת RNA

במנגנון זה מבוצעת החלפה של בסיס בתעתיק ה-RNA שבו מתחלף בסיס ציטוזין (C) בבסיס יורידין (U), או בסיס אדנוזין (A) בבסיס אינוזין (I). שינויים אלו בקוד הגנטי ברמת ה-RNA עלולים לגרום לשינוי בחלבון שיתורגם לשינוי בפונקציה שלו.

הגן Apo-B היה הגן הראשון בו התגלה מנגנון זה, שבו תעתיק ה־pre-mRNA של הגן עבר החלפה של בסיס ציטוזין (C) לבסיס יורידין (U).

חלבון 5-HT2C receptor שהוא רצפטור לסרוטונין מסוג GPCR המתבטא במוח, עובר מודיפיקציה שבה בסיס אדנוזין (A) מוחלף בבסיס אינוזין (I) שמתורגם על ידי הריבוזום לגואנוזין (G) בשל זיווג הבסיסים הדומה שהוא יוצר. העריכה מבוצעת על ידי אנזימי (adenosine deaminases that act on RNA (ADARs הקשורים למולקולת ncRNA המקטלזת את תגובת ההידרו דה-אמינציה הכרוכה בהחלפת הבסיס. נכון להיום זה החלבון היחידי מסוג GPCR שידוע כי הוא עובר מודיפיקציה שלאחר תרגום על ידי מולקולת RNA[27].

בקרת גנים

ביטויים של אלפי גנים מבוקר על ידי מולקולות ncRNA. רבות ממולקולות ה-ncRNA מצויות במקטעי האינטרונים, ואכן נראה כי מורכבות היצורים עולה ככל שעולה מספר האינטרונים.

יתרונות הבקרה על ידי ncRNA מצויות בכך ששעתוק הגן מוביל ליצירת בקרה ללא צורך ביצירת מולקולות חדשות, בזמן אמת עם יצירת התעתיק.

ncRNA הפועל ציס

ישנן מולקולות ncRNA הנמצאות בחלק ה-5' UTR של mRNA המשפיעות על ביטוין במספר דרכים, למשל על ידי riboswitch המהווה מעין 'מתג' של מולקולת mRNA ואליו נקשרת מולקולה קטנה הגורמת לשינוי בכמות החלבון שנוצר מתעתיק ה־mRNA.

attenuator או מחליש ממלא תפקיד בבקרת גנים הלוקחים חלק בביוסינתזה של חומצות אמינו בפרוקריוטים, כך שבעת שעתוקו יוצר מבנה לולאתי העוצר את השעתוק כאשר תנאים מסוימים לא מולאו.

ncRNA הפועל טרנס

microRNA הן מולקולות רנ"א חד-גדיליות קצרות באורך 21–23 נוקליאוטידים, המשמשות לבקרת התבטאות גנים בתאים אאוקריוטים. מנגנון הפעולה של מולקולת microRNA הוא התאמה חלקית למולקולות mRNA מסוימות בעיקר לקצה ה-3' UTR, ומפנות אותן לפירוק או עיכוב תרגום. בכך מולקולת ה־microRNA תשמש לבקרת ביטוי שלילית לחלבונים המתורגמים מאותם mRNA. מולקולת microRNA בודדת יכולה להתאים למגוון גדול של מולקולות mRNA כך שמולקולה בודדת יכולה לבקר מאות גנים. משוער כי כ-60% מהגנים היוצרים חלבונים מבוקרים על ידי microRNA[28].

מחקר חדש מציע כי פעולת השעתוק של מולקולת ה־ncRNA לבדה משפיעה על התבטאות גנים. כאשר משועתקים גנים מסוימים של ncRNA על ידי RNA פולימראז II הגורמים לשינוי דחיסות הכרומטין ופתיחתו מובילה לשעתוק גנים נוספים[29].

הגנה על ה־DNA

piRNA ו-rasiRNA הן מולקולות ncRNA המעורבות בהגנה מפני טרנספוזונים.

תפקידים מבניים

Thumb
הדמיית 3D של מולקולת lncRNA טלומראז הומני.[30]

לצורך הארכת הטלומרים המהווים אזורי הקצוות של הכרומוזומים באיקריוטים, מבוטאת מולקולת lncRNA בשם (TERRAs (telomeric repeat-containing RNAs מאזור הטלומר. TERRAs מבקרת את פעילות הטלומראז ובכך עוזרת לשמור על שלמות הטלומר[31].

לצורך השתקה של כרומוזום X, מולקולת lncRNA בשם XIST מגייסת את קומפלקס ה־polycomb לצורך השתקת כרומוזום ה-X ממנו היא שועתקה[32]. TSIX המשועתקת מהגדיל הנגדי לגן XIST מבקרת את רמות ביטויו של XIST בזמן ההשתקה[33].

חישת טמפרטורה בפרוקריוטים

תהליכים רבים בפרוקריוטים מושפעים מטמפרטורה, החל מיעילות תהליכים תאיים, התבטאות גנים (בתגובה לשוק חום/קור) וביטוי גנים וירולנטיים (הנחוצים לפתוגניות). RNA thermometers (RNATs) הן מולקולות RNA בעלות מבנה שניוני לולאתי המכיל אזור קישור לריבוזום (RBS) ואזור קישור ל־5' UTR של mRNA אותו הן מבקרות. מולקולת RNATs עוברת בתגובה לשינוי טמפרטורה שינוי קונפורמציה (סידור המרחבי) שיכול לחשוף או להסתיר את אזור הקישור לריבוזום (RBS) ובכך לאפשר או למנוע תרגום של התעתיק ולאפשר תגובה מתאימה לשינוי הטמפרטורה[34].

Remove ads

שיטות לגילוי ncRNA, אפיונם והבנת תפקידם

סכם
פרספקטיבה

לאחר תום ריצוף ה-DNA בפרויקט הגנום האנושי, התברר כי רק כ-2% מהגנום האנושי מקודד לחלבון, אך רוב החומר התורשתי אכן עובר שעתוק. מחקרים עדכניים ופרויקטים ביואינפורמטיים מגלים עוד ועוד גנים המקודדים למולקולות ncRNA, אך רק לאחוז קטן יחסית ידועה פעילותם הביולוגית. התעורר דיון בשאלה האם אותם מקטעים הם אכן בעלי פעילות או שהם תוצר לוואי, רעש, לתהליך התבטאות גנים. לצורך כך התפתחו מספר שיטות לבדיקת אזורים פונקציונליים ב-DNA.

  • שמירות אבולוציונית – על ידי שימוש בעימוד רצפים ניתן לזהות אזורים דומים ברצף ה-DNA ולאתר שמירות אבולוציונית. ככל שאזור יהיה יותר שמור בין אורגניזמים שונים, כך גדלה ההערכה כי אזור זה חשוב וכי הוא בעל פונקציה.
  • בדיקת רמות הביטוי השונות של אזור זה ברקמות שונותRNA-seq (ריצוף RNA) משמש לרצף את כלל מולקולות ה-RNA בדגימה. על ידי כימות המולקולות השונות ניתן לקבוע את רמות הביטוי השונות שלהן ברקמות שונות. ככל שאזור מסוים בגנום מתבטא ברמות גבוהות יותר ו/או על פני רקמות שונות הדבר יצביע על כך שמדובר במנגנון מכוון ולא ברעש רקע לתהליך השעתוק.
  • בדיקת השפעת מוטציות/וריאציה על מעורבות מחלות – עד היום אופיינו מחלות רבות בהן התרחשו מוטציות ב-ncRNA כגון סרטן, ALS ואלצהיימר. גם אללים השונים בנוקלאוטיד אחד באוכלוסייה (SNP) עלולים לגרום לשינוי בסיכון לחלות במחלה, תגובה לתרופה ועוד.

כיום קיים קושי לאתר גני ncRNA בגנום בשל אורך החיים הקצר שלהם, רמת ביטוי נמוכה וחוסר מאפיין מוכר כמו קודון התחלה/סיום המאפיין את הרנ"א המקודד לחלבון.

על כן התפתחו שיטות לניבוי מבנים שניוניים למולקולות ncRNA המעידים על פונקציה. הניבוי נעשה על ידי שימוש בשיטות הבאות:

  • חישוב האנרגיה המינימלית של המבנה השניוני – מולקולת ה-RNA היא סליל חד-גדילי שנוטה להתקפל על עצמו על ידי זיווג בסיסים. לכל מבנה שניוני רמת אנרגיה הניתנת לחישוב, כאשר המולקולה תהיה יציבה ביותר ברמת האנרגיה המינימלית שלה וככל שיעלה מספר הבסיסים המזווגים.
  • חישוב השונות ההדדית – מאחר שפעילות מולקולת ה-RNA מוכתבת על ידי המבנה התלת־ממדי שלה, גם רצפים שונים של RNA יכולים להתקפל למבנה דומה ולהיות בעלי פעילות דומה. לחץ סלקטיבי על מינים שונים יכול לתרום להיווצרות אזורים שאינם דומים ברצף, אך דומים במבנה השניוני היציב שלהם. בצורה זו ניתן לחפש ביצורים שונים זיווג בסיסים שיניב מבנה דומה.
Remove ads

ncRNA ומחלות

מוטציות המתרחשות בגנום עלולות לגרום להופעה של מגוון מחלות, הכוללות סרטן, מחלות נוירולוגיות כמו ALS ואלצהיימר ומחלות קרדיוואסקולריות.

במגוון מחלות סרטן נמצא כי פרופיל הביטוי של מולקולות microRNA השתנה. מולקולות אלו יכולות למשמש כאונקוגניות (מעוררות סרטן) או כגן מדכא סרטן ולחלקן תפקיד מפתח ביצירת הגידול[35].

לתפקוד מערכת העצבים באופן תקין נדרשות מולקולות microRNA הרבות ביותר מבין הרקמות ההומניות, כאשר 70% מכלל מולקולות ה-microRNA מבוטאות במוח ורבות מהן ספציפיות לנוירונים[36]. הן מעורבות בהתפתחות הנוירונים, יצירת spine דנדריטי והפרת הבקרה שלהן נמצאה בכל המחלות הנוירולוגיות שנחקרו, אטקסיה בתאי פורקנייה[37], טרשת נפוצה בתאים אוליגודנדרוציטים[38], מחלת פרקינסון בנוירונים הדופמינרגים[39], ומחלת אלצהיימר בנוירונים המבטאים alpha-CaMKII[40].

תסמונת האיקס השביר (FXS) עלולה להתרחש בעקבות מוטציה במרכיב בקומפלקס ה-RISC.

הגן miR-1 קשור בהתפתחות אריתמיה כיוון שהוא מדכא גנים היוצרים תעלות יונים לאחר ביטויים[41]. בנוסף, יצירת אתריאומה (הצטברות מאקרופאג'ים בדופן העורק) וכן הפנוטיפ הפיזיולוגי של תאי שריר חלק ואסקולאריים, תלויים בהתבטאות גנים[42]microRNA[43].

Remove ads

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא NcRNA בוויקישיתוף
  • פרויקט ENCODE – פרויקט כלל עולמי שמטרתו לאפיין אלמנטים שונים (כמו ncRNA) בגנומים שונים.
  • RNAdb – מאגר מידע של ncRNA ביונקים.
  • nonCODE – מאגר מידע של מגוון מולקולות ncRNA.

הערות שוליים

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads