Hamiltonov operator

From Wikipedia, the free encyclopedia

Remove ads

Hamiltonov operator , što se izgovara kao nabla ili del, u trodimenzionalnom je Kartezijevom koordinatnom sustavu R3 s koordinatama (x, y, z) definiran operatorima parcijalnih derivacija

gdje su jedinični vektori usmjereni kao koordinatne osi sustava.[1][2][3] Operator se često upotrebljava u fizici, u područjima od mehanike fluida do elektromagnetizma.

Kada djeluje na skalarna polja, njime se dobije gradijent. Kada se zdesna skalarno množi s vektorskim poljem dobije se divergencija tog polja. Kada se zdesna vektorski množi s vektorskim poljem, dobije se rotacija polja.[4] Hamiltonov operator skalarno pomnožen samim sobom daje Laplaceov operator za skalarna polja .[1]

Definicija se može poopćiti i na n-dimenzionalni Euklidski prostor Rn. U Kartezijevom koordinatnom sustavu s koordinatama (x1, x2, ..., xn), operator se definira kao[4]

gdje su jedinični vektori u tom prostoru.

U Einsteinovoj notaciji, gdje se po ponovljenim indeksima provodi zbrajanje, ta se definicija može kraće napisati kao

.
Remove ads

Izvori

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads