Rádióhullámok terjedése a kozmikus térségben

From Wikipedia, the free encyclopedia

Rádióhullámok terjedése a kozmikus térségben
Remove ads

Az emberiség az utóbbi fél évszázadban jelentős lépéseket tett a világűr megismerése érdekében. Az erőfeszítéseket számos siker koronázta, és számtalan olyan technológiai eszköz jött létre, melyek működtetéséhez elengedhetetlenül fontos mind a Föld légkörének, mind a kozmikus térségnek pontos ismerete. Mind az űrtávközlés, mind a rádiócsillagászat szempontjából a légkör és a világűr rádióhullámokat hordozó közegnek minősül.

Thumb
Vitino, RT-70 rádióteleszkóp (bolygó-radar)
Remove ads

Átmenet a légkör és a világűr között[1]

A Föld légköre és a kozmikus térség között pontos határvonal nem húzható, a légkör fokozatosan ritkul. Az elektromágneses hullámok terjedése szempontjából a fokozatosan ritkuló légkörnek is hatása van a Föld-Űr Űr-Föld tipusú összeköttetésekre.

A légkör hatása a terjedés nyomvonalára

A légkör ritkulásával fokozatosan csökken a légkör törésmutatója, ennek következtében ha a rádióhullámok nem a zenit felől érkeznek, illetve nem a zenit irányában történik a kisugárzása, akkor a sugárzás trajektóriája elgörbül. A légkör alsó részén a görbülés erősebb, mint a felső légkörben.

Thumb Thumb
A Föld-Űr, Űr-Föld kommunikációban a legideálisabb, ha a zenit irányában történik. Ilyenkor
  • a legrövidebb a Föld légkörében megtett szakasz, és a legkisebb a légkör általi csillapítás
  • a sugár nyomvonala egyenes
  • a sugárzás iránya pontosan az eszköz irányába mutat.
Minél inkább eltér a sugárzás iránya a zenittől, a nyomvonal annál inkább elgörbül. Ez az elgörbülés nem frekvenciafüggő, így az antenna beállítási iránya kiszámítható a törés törvényeit figyelembe véve a szokásos trigonometrikus képletekkel.

A sugárzás iránya minél inkább közelebb esik a horizonthoz, annál hosszabb a rádióhullámok légkörben megtett útja, így annál inkább érvényesül a légkör csillapító hatása.

A légkör csillapító hatása frekvenciafüggő.

A Föld légkörének átlátszósága

A Föld légköre nem minden frekvencián egyformán átlátszó. Ez a frekvenciafüggés nem lineáris, nem számítható ki, és időben is változó lehet. A légkör tulajdonságai behatárolják, hogy milyen frekvenciatartományt használjanak űrtávközlésre vagy rádiócsillagászatra.

Fontos tényező még az ionoszféra, amelynek átlátszóságát befolyásolja az űridőjárás.

További információk fmin, fmax ...

Meteorok[2]

Meteorbecspódáskor a légkörben a becsapódás nyomvonalán ionizált gázok keletkeznek, amelyekről a rádióhullámok visszaverődnek. Ha a becsapódás nyomvonala és a Föld-Űr-Föld kommunikáció útvonala keresztezi egymást, akkor az elhalkulást, vagy kiesést okozhat néhány másodpercre, esetleg 1-2 percre.

Az űrben keringő mikrometeorok méretükből adódóan nem gyakorolnak hatást a rádiófrekvenciás összeköttetésekre.

Ionizáció miatt létrejövő rádiócsend

A Föld légkörébe nagy sebességgel belépő űreszköz körül ionizált gázréteg jön létre, ezért egy ideig elvesztik vele a rádiós összeköttetést.

Remove ads

A Föld körüli térség

Terjedés mágneses erővonalak mentén[1]

A Van-Allen övezetben a Föld mágnesességének hatására ionizált, töltött részecskék áramlanak. A sugárzási öveken belül ezeknek a részecskéknek az eloszlása nem homogén, hanem a mágneses erővonalak mentén felgyülemlenek. Egy-egy erővonal a Föld északi féltekétől a déli féltekig terjed. Az alacsonyfrekvenciás rádióhullámok az erővonalak mentén felgyülemlett, koncentrált vonalak között, oda-vissza pattogva eljutnak a Föld egyik féltekétől a másik féltekéig.

Thumb

Ezeknek a rádióhullámoknak mind az adása, mind a vétele csak a mágneses pólusok környékén valósíthatók meg. A távközlésben nincs jelentőségük, mivel csak néhány 10 kHz alatt figyelhető meg ez a jelenség, így nagyon kevés az átvihető információ, mindemellett a jelenség észlelése nagy méretű antennákat igényel mind az adó, mind a vevő oldalon.

Föld és műholdak

Föld - Hold - Föld összeköttetések

Föld - Hold - Föld összeköttetésről akkor beszélünk, amikor a Földről a Hold irányába sugárzunk, és a Földön a Holdról visszavert jelet vesszük.

Föld - Hold, Hold - Föld összeköttetések

Föld - Hold, Hold - Föld összeköttetésről akkor beszélünk, amikor a Földről sugárzunk a Hold felé, amit Holdra vitt, vagy oda telepített eszköz vesz, illetve a Holdon lévő eszköz jeleit a Földön vesszük.

Az ilyen kapcsolat sokkal stabilabb, és erősebb, mint az EME, hiszen ilyenkor már a Holdon is a rendelkezésre áll egy megfelelő teljesítményű adóberendezés, illetve a hozzá tartozó, megfelelő méretű antenna.

Remove ads

Naprendszer[1]

Thumb
Mágneses erőterek a Naprendszerben

A Nap légkörének határvonala sem nem határolható be egy éles határvonallal, az átmenet itt is fokozatos. A Nap körüli kozmikus térség igen bonyolult felépítésű, ezt a térséget mágneses terek és plazmafolyamok töltik ki, amelyek a Nap ritka légkörét képezik. Ez a légkör legalább a Mars pályályáig terjed ki.

A Nap nyugalmi állapota esetén a bolygóközi mágneses erőtér erővonalai archimédeszi spirális alakúak, és a nagy energiájú részecskék ezeknek a spirálisoknak a mentén mozognak. Napkitörések esetén ezek a spirálok összezavarodnak. A mágneses tér és a plazmasűrűség inhomogén lesz.

Thumb

Az ionizált, vagy nagyenergiájú részecskék egy adott határfrekvencia alatt befolyásolják a rádióhullámok terjedését, átlátszatlan, illetve visszaverő közeget képezhetnek. Ez a határfrekvencia néhány 10 kHz körül van, az ionizált részecskék sűrűségétől függően. Ennek tanulmányozása a Földről nem valósítható meg, hiszen ez a határfrekvencia a földi ionoszféra áteresztőképességének határfrekvenciája (10 - 30 MHz) alatt van. Ezt a határfrekvenciát nevezik kritikus frekvenciának, vagy plazmafrekvenciának.

A Naprendszer bolygóközi térségében a töltött részecskék koncentrációja lényegesen kisebb mint a földi ionoszférában. Ez a koncentráció minél nagyobb, annál nagyobb frekvenciájú rádióhullámokra képes hatást gyakorolni.

A kozmikus térség átlátszósága a Naprendszerben, és a Föld körüli űrben is nagyságrendekkel jobb, mint a Föld légkörének átlátszósága.

Terjedés bolygók, holdak felszínén

Más bolygók, holdak felszínén más-más terjedési viszonyok uralkodnak, a különböző rádiófrekvenciás sávok felhasználása, terjedés alapján történő beosztása eltér a Földön megszokottól. Egy bolygó vagy hold felszínén kiépítendő távközlési hálózatok tervezésénél teljesen más körülményeket kell feltételezni, mint a Földön.

  • Rádióhorizont: Mivel a bolygók, holdak méretei eltérnek, így a rádióhorizont mérete is más lesz mint a Földön. Közvetlen hullámú rádiós összeköttetések tervezésekor ez kritikus szempont.
  • Légköri hatások: Különböző bolygók légkörének fizikai, kémiai tulajdonságai eltérőek, így minden bolygó felszínén más légköri terjedések adódnak. Légkör hiánya esetén pedig nem kell légköri hatásokkal számolni, így horizonton túli összeköttetés légköri terjedés útján nem valósítható meg.
  • A bolygók vagy holdak talaja más-más összetételű, így a felületi hullámterjedés vagy a talajreflexió is másként alakul, mint a Föld felszínén.

Bolygóközi kommunikáció

A bolygóközi kommunikáció megvalósítása az adott bolygók légköri terjedésének ismeretén felül csillagászati ismereteket is igényel. Ismerni kell hogy

  • X bolygó felszínének adott pontja mely időintervallumokban látható Y bolygó felszínének adott pontján. Egy másik bolygóra telepített eszközzel történő kommunikáció segítésére a bolygó körül műholdat állítanak pályára.
  • X bolygón ismerni kell, hogy a kommunikáció időpontjában milyen irányszögből ( eleváció és azimut) látszik Y bolygó. Továbbá a látszólagos mozgását is ismerni, követni kell. Y bolygón is ismerni kell ugyanezeket az adatokat X bolygóról.
  • X-Y bolygó pillanatnyi távolságát. Mindkét bolygó felszínén gondoskodni kell olyan nyereségű antennákról, hogy a legnagyobb távolság esetén is megfelelő jelszintet biztosítson, illetve behatárolni azt az időintervallumot, amikor nem valósítható meg a kommunikáció. X-Y bolygó távolságának ismerete abból a szempontból is fontos, hogy mennyi jelkéséssel kell számolni. Ez lehet akár több perc, vagy akár órányi is.
  • X-Y bolygó pillanatnyi távolsága állandóan változik, egymáshoz képesti relatív sebességük elegendően nagy ahhoz, hogy a doppler-hatás következtében a kommunikációra használt frekvencia számottevően eltolódjon. A bolygók egymáshoz képesti relatív sebessége időben szintén változik, így a forrásjel frekvenciája a célhelyen a relatív sebesség függvényében változik. Ez a frekvenciaeltolódás akár 100 kHz körüli is lehet.
  • Egy bolygó vagy hold felszínére telepített kommunikációs eszköz átviteli frekvenciáját kis mértékben módosítja a gravitációs idődilatáció is. Ha a Föld felszínén egy oszcillátor frekvenciája 1400000000 Hz, akkor a Jupiter felszínén ugyanennek az oszcillátornak a frekvenciája 1400000027 Hz lenne. Ugyanennek az oszcillátornak a frekvenciája gravitációs forrásoktól távol 1399999999.023 Hz lenne.
Remove ads

Csillagközi tér

Jelenleg (2024) az emberiség a csillagközi térben nem végez semmilyen aktív kommunikációs tevékenységet. A Földtől legmesszebb járó ember alkotta eszközök még nem léptek ki a csillagközi térbe.

A csillagközi, és az intergalaktikus térségen keresztülhaladó rádióhullámok a passzív rádiós űrkutatásra, és a földön kívüli intelligenciától származó rádiójelek felderítésére korlátozódik.

A csillagközi tér majdnem tökéletes vákuum, a rádióhullámokra hatást a

  • csillagok gravitációs tere (elhajlás)
  • gravitációs lencse
  • csillagködök (szórás, csillapítás)

gyakorolnak.

Különféle objektumokból származó rádiófrekvenciás sugárzások elemzése számtalan új ismerettel gazdagította az emberiséget.

A csillagrendszerek közti rádiós kommunikációt leginkább a nagy távolság miatti

nehezíti.

Remove ads

Szabadtéri csillapítás és jelkésés a kozmikus térségben

Egy összehasonlító táblázat néhány összeköttetésre:

További információk Megnevezés, Távolság (m) ...

A csillapítás és a jelkésés mértékének változását a számok hossza is jól szemlélteti.

Remove ads

Kapcsolódó témájú szócikkek

Jegyzetek

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads