Természetes számok
a számoláshoz „természetesen” használt szám, azaz egy pozitív vagy nemnegatív egész (a 0 befoglalásának egyértelműsítéséhez használd a Q28920044 vagy Q28920052 elemet) From Wikipedia, the free encyclopedia
Remove ads
Természetes számoknak nevezik
- a nemnegatív egész számokat, tehát a 0, 1, 2, 3, 4 … számtani sorozat tagjait,[1][2][3]
- más értelmezés szerint a pozitív egész számokat, tehát az 1, 2, 3, … számtani sorozat tagjait.[4]
A sorozat lépésköze 1, tehát a sorozat következő tagját mindig úgy kapjuk, hogy az utolsó taghoz hozzáadunk 1-et. Végtelen sok természetes szám van, mivel bármilyen nagy számhoz is hozzá tudunk adni 1-et, újabb tagot képezve a sorozatban.
A természetes számok halmazát a matematikában egy tipográfiailag kiemelt félkövér vagy „blackboard bold” (kontúros) (Unicode: U+2115) betűvel jelölik (a latin naturalis, azaz 'természetes' szó nyomán). A természetes számok halmazának megszámlálhatóan végtelen számú eleme van.
A természetes számok az összeadásra és a szorzásra kommutatív félgyűrűt alkotnak.
Remove ads
Történelmi vonatkozások
A „természetes” elnevezés eredete
Az ókorban a természetes számokat egyszerűen csak számoknak nevezték (a görögök még az 1-et sem értették közéjük); más nevezetes számosztályokat nem tartottak számon (a racionális számokat pl. számok arányainak tekintették, nem pedig önálló számosztálynak).
A "természetes" elnevezés valószínűleg csak a 19. század végén alakult ki. R. Dedekind, akitől a nevezetes számosztályok (természetes, egész, valós stb.) betűs jelöléseinek egy része származik (ezek szintén ebben az időben alakultak ki), egy 1872-es cikkében a természetes számokról még mint „úgynevezett természetes számokról” beszél (vagyis a kifejezés még nem rögzült teljesen).[5] Grosschmid Lajos magyar matematikus egy 1911-es számelméleti cikkében[6] (egy lábjegyzetben) Dedekindnek tulajdonította a „természetes” kifejezést („Természetes szám alatt - Dedekind nyomán - értek bármely pozitív raczionális egész számot. V. ö. : naturliche Zahl; Dirichlet-Dedekind i.m.[7] XI. Suppl. 436. l.”).
Természetes szám-e a nulla?
A szakirodalomban eltérések találhatóak abban, hogy a 0 számot a természetes számok közé sorolják-e; másképp szólva, hogy a "természetes szám" elnevezéssel a {0; 1; 2; 3; 4, ....} vagy az egy elemmel szűkebb {1; 2; 3; 4; ...} halmazt illessük-e. Mivel ez nem szorosabb értelemben véve matematikai probléma (nem lehet matematikai tételekből kiszámítani vagy bebizonyítani, természetes szám-e a nulla), hanem pusztán egy elnevezés tartalmáról való döntés, így definíció, megállapodás kérdése, hogy mi tartozik a névvel jelölt csoporthoz. A kérdés mégsem érdektelen, mert, bár a probléma nem matematikai jellegű, eldöntésének már vannak ilyen következményei - a feladatok, állítások, tételek rendszeresen hivatkoznak a természetes számok halmazára, és a feladat megoldhatóságát, a tétel érvényességét vagy bizonyíthatóságát döntheti el a fogalom értelmezése.
Régebben a nulla nem tartozott a természetes számokhoz. A klasszikus, ösztönszerű számfogalom megformálódásakor sem vesszük a számok közé a „semmit”, a nulla Európába csak arab közvetítéssel jutott el a középkorban, a nullával nem lehet osztani. Ennek az értelmezésnek az alátámasztására következzenek idézetek:
- „természetes számok: pozitív egész számok;”[8]
- „A természetes számok pozitív számok. ... A 0 nem tartozik sem a negatív, sem a pozitív számokhoz, hanem azokat szétválasztja.”[9]
- „Tegyük fel, hogy , és
- i) ,
- ii) minden esetében .
- Ekkor .
- ...
- ... vezessük be a későbbiekben is gyakran előforduló
- jelölést.”[10]
A 19. században, halmazelméleti levezetésekben vették először a nullát, mint üres halmazt a természetes számok közé, a definíciót „nem-negatív egész számok”-ra módosítva. Az egyértelműség keresésének szándékával született az a szokás, hogy a nem-negatív egészeket , a pozitív egészeket, tehát a nulla nélküli értelmezést pedig vagy szimbólummal jelölik[forrás?]; az jel önmagában bizonytalanságban hagyja az olvasót. Az jelöléssel is lehet találkozni, de ennek értelmezése nem egységes.
Jellemző, hogy G. Peano, akinek a természetes számok első formális matematikai jellegű elméletének lefektetését tulajdonítják, első ilyen tárgyú cikkeiben még nem sorolta a 0-t a természetes számok közé, későbbi cikkeiben (1898-tól, Formulaire de mathématiques II. c. kiadvány, 2. fej.) azonban már igen. Peano használta és vezette be (ugyanott) a fentebb említett N0 és N1 jeleket is a kétféle számhalmaz megkülönböztetésére.[11]
Remove ads
A természetes számok formális-axiomatikus elmélete – a Peano-aritmetika
Minden matematikai természetű témakör akkor tehető tudományos vizsgálódás tárgyává, ha rögzítjük azt az axiomatikus elméletet, melyben a témakör összes állítása formális kijelentés alakjában megfogalmazható. A természetes számok matematikájának axiomatikus elmélete, mint elsőrendű elmélet a Peano-aritmetika, jelben: PA (Giuseppe Peano olasz matematikus tiszteletére).
A PA alapfogalmai a 0 konstansjel (individuumnév), melyet nullának nevezünk, a ' egyváltozós függvényjel (egybemenetű névfunktor), melyet rákövetkezés vagy szukceszor operátornak mondunk (szemléletesen n' az n számot pontosan eggyel követő szám), a + kétváltozós függvényjel, azaz az összeadás és a függvényjel, ami a szorzás.
A PA axiómái a következők (az n, m, k, … jelek olyan változók, melyek természetes számokat szimbolizálnak):
- (P1) n' 0
- (azaz a nulla semminek sem rákövetkezője)
- (P2) n' = m' n = m
- (ha két szám rákövetkezője egyenlő, akkor a számok is egyenlők)
- (P3) n + 0 = n
- (a nulla alaptulajdonsága)
- (P4) n + m' = (n + m)'
- (összeg rákövetkezője)
- (P5) n 0 = 0
- (nullával való szorzás)
- (P6) n m' = (n m) + n
- ("elődisztributivitás")
- (P7) ( F(0) & (F(n) F( n' ) ) ) F(n)
- (a teljes indukció formulasémája, F tetszőleges a Peano-aritmetika nyelvén megfogalmazható tulajdonság (predikátum))
A 0 rákövetkezőjét, 0'-t 1-gyel jelöljük. A (P1) axiómába n helyére 0-t helyettesítve ekkor kapjuk, hogy
Remove ads
A természetes számok a halmazelméletben
A Peano-aritmetika halmazelméleti modelljének nevezzük az olyan (N, 0, ', +, ) rendezett 5-öst, ahol N halmaz, 0 ∈ N, ' :N N függvény, +:N N N, és :N N N pedig művelet, melyekre teljesülnek a PA rendszer axiómái.
Standard modell
A természetes számok halmazelméleti modelljeként kiválóan megfelel a
halmaz. Itt rendre
A természetes számok halmaza végtelen (mégpedig megszámlálhatóan végtelen), számosságát az
(alef null – itt a héber ábécé első betűje) szimbólummal jelöljük. Ha mint rendszámra gondolunk rá, akkor az
jelet használjuk.
A természetes számok halmaza a legkisebb számosságú végtelen halmaz.
Rendezési tulajdonságok: A természetes számok halmazának egy nagyon fontos tulajdonsága, hogy (a szokásos rendezéssel) jólrendezett, azaz akárhány (de legalább egy) természetes számot kiválasztva azok közt van egy legkisebb.
Remove ads
Algebrai tulajdonságok
Algebrai tulajdonságok: A természetes számok halmaza az összeadással kommutatív félcsoport, a szorzással szintúgy. Az (N,+) egyműveletes struktúrát a természetes számok additív félcsoportjának, míg az (N, ·) egyműveletes struktúrát a természetes számok multiplikatív félcsoportjának nevezzük.
A természetes számok halmaza zárt (a négy alapművelet közül) az összeadásra és a szorzásra.
Axiomatizálás
Először Richard Dedekind definiálta axiómákkal a természetes számokat 1888-ban implicit módon.[12] Ettől függetlenül Giuseppe Peano 1889-ben egyszerűbb és formálisan precíz axiómarendszert adott meg.[13][14] Ezeket a Peano-axiómákat elterjedten használják. Mivel az eredetihez másodfokú predikátumlogika szükséges, azért használják ennek gyengébb változatát, a Peano-aritmetikát.[15] Más, hasonló axiómarendszerek a Robinson-aritmetika és a primitív rekurzív aritmetika.
A természetes számok definiálhatók a Peano-axiomákkal. Ekkor a természetes számok halmaza az, ami eleget tesz a Peano-axiómáknak. Végtelen sok halmaz van, ami megfelel ezeknek a kritériumoknak, de ezek csak a jelölésben különböznek, a viselkedésük ugyanaz. A matematikában ezt izomorfiának nevezik. Ezt az eredményt Dedekind-féle egyértelműségi tételnek nevezik. Emiatt lehetséges a természetes számokról beszélni.
Remove ads
Neumann János modellje
Neumann Jánosnak sikerült a természetes számokat halmazokkal ábrázolnia, azaz megalkotta a természetes számok halmazelméleti modelljét:
A kiindulási elem a „0“ a üres halmaz. Az „1“ az az egyelemű halmaz, aminek egyetlen eleme a nulla. Ez különbözik az üres halmaztól, mivel annak nulla eleme van.
A rákövetkezési reláció azt a halmazt adja, ami tartalmazza az adott halmaz összes elemét, és a halmazt is. Más szavakkal, az adott halmaz és az azt egyelemű halmazként tartalmazó halmaz uniója. Ez utóbbi diszjunkt az adott halmaztól, így minden halmaz különbözik az előzőtől, tehát a rákövetkező reláció injektív.
Az egyes természetes számok létezését már a gyenge halmazelméleti axiómák biztosítják. A természetes számok vagy halmazának létezéséhez a Zermelo-Fraenkel-axiómarendszerben egy külön axiómának, a végtelenségi axióma biztosítja.
A konstrukció további folytatása, illetve további megelőző számok nélküli számok definiálása a rendszámokat hozza létre.
Remove ads
A valós számok részhalmaza
A természetes számok definiálhatók induktívan, a valós számok közül kiválasztva.[16]
A valós számok egy részhalmaza induktív, ha teljesíti a következőket:
- 0 eleme -nek
- Ha eleme az halmaznak, akkor is eleme az halmaznak.
Ekkor az induktív halmazainak metszete.
Remove ads
További információk
Jegyzetek
Források
Fordítás
Kapcsolódó szócikkek
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads